
CrossTalk - Month 2024 Month 2024 1

CrossTalk: The Journal of
Defense Software Engineering

CrossTalk: The Journal of Defense Software Engineering is spon-
sored by the Air Force Sustainment Center Software Directorate
(AFSC/SW). It is also supported by other partners within the Depart-
ment of Defense (DoD), other United States Air Force (USAF) sys-
tems, and the software engineering community. Established by Gen.
Richardson, the Air Force Materiel Command Commander (AFMC/
CC), the AFSC Software Directorate supports the AFMC Strategic
Plan by facilitating and delivering an integrated software ecosystem
across the Department of the Air Force (DAF).
AFSC/SW serves as the organic source of software engineering
services for DAF weapon systems and equipment, and for all ech-
elons of software development and sustainment, keeping pace with
advancing technology, mission capability needs, and dynamics of
the cyber environment.
The mission of CrossTalk is to encourage the engineering develop-
ment and proper management of software to improve the reliability,
sustainability, and responsiveness of our warfighting capability.
CrossTalk Online: Current and past issues are posted at the follow-
ing locations: The Software Directorate website, All Partners Access
Network (APAN), and Defense Technical Information Center (DTIC).
The Software Directorate website houses the four most recent is-
sues of Crosstalk while past issues can be found on APAN or DTIC.
https://afscsoftware.dso.mil/crosstalk/
https://community.apan.org/wg/crosstalk/
https://www.dodtechipedia.mil/dodwiki/x/HwDqFQ (Requires .mil
domain for full support)
Subscriptions: Please send an email to the publisher to receive a
notification when each new issue is published online. Readers can
also sign up for notifications on APAN.
Article Submissions: We welcome articles of interest to the defense
software community. Articles must be approved by the Technical
Review Board (TRB) prior to publication. Please follow the Author
Guidelines, available at any of the websites above. CrossTalk does
not pay for submissions. Published articles remain the property of
the authors and may be submitted to other publications. Security
agency releases, clearances, and public affairs office approvals are
the responsibility of the authors and their organizations. Potential
articles can be emailed to: AFSC.SWSWDE.Crosstalk@us.af.mil
Reprints: Permission to reprint or post articles must be requested
from the author or the copyright holder and coordinated with Cross-
Talk.
Trademarks and Endorsements: CrossTalk is an authorized publi-
cation for members of the DoD. Contents are not necessarily the
official views of, or endorsed by, the U.S. government, the DoD, the
sponsors, or co-sponsors. All product names referenced in this issue
are trademarks of their respective companies.
Publishing Schedule and Back Issues: CrossTalk is currently being
published quarterly. Please phone or email us to see if back issues
are available, free of charge.
ISSN 2160-1577 (prior print versions); ISSN 2160-1593 (online)

Contact us
Phone
Lennis L. Burton, (801) 775-3262
Siria L. Snounou, (801) 777-4734
Destinie Comeau, (801) 775-3246

E-Mail
AFSC.SWSWDE.Crosstalk@us.af.mil

Connect with
us on the

AFSC Software
Directorate

LinkedIn page!

Sponsor
Mr. Edward W. Ayer, SES

Director, AFSC Software Directorate

Managing Director
Gabbrieal C. Madkins

Chief, Directorate Services Division

Assistant Director
Megan G. Allen

Chief, Creative Content Branch

Managing Publishers
Lennis L. Burton

CrossTalk Publications Manager
Siria L. Snounou

CrossTalk Publications Manager
Destinie Comeau

CrossTalk Publications Manager

Technical Reviewer
David Webb

Software Subject Matter Expert

CrossTalk Team
AFSC Software Directorate

Directory
4

43
8
7

75

From the Sponsor

Editor’s Choice

Big Data

Call for Articles

BackTalk Cover Design by Kent Bingham

Big Data
8 Tailoring Cybersecurity Big Data Systems to Gain Effectiveness and Efficency, By Mr. Dan Ruef

Explains how users must be able to analyze and manipulate data before the true benefits of data can be realized.

43 Discusses engineering security into Application Programing Interfaces to ensure they work correctly and the data
inside the pipeline is protected.

Engineering Security in APIs, By Mr. Alejandro Gomez

65 Describes the importance of cyber resiliency in operating environments.
Common Cyber Resilience Operating Environment (CCROE), By Ms. Linda Wright

52
Elucidates on the gap between software and hardware, including the human element that keeps this gap wide.
Software and Hardware: Ancient to Modern Times, By Mr. Elbert Dockery

15
Examines the current state of data within the DoD and offers solutions to better use data in the future.
Is Data Really All You Need?, By Stringer et al.

CrossTalk: The Journal of
Defense Software Engineering

32
Details the considerable strengths and weaknesses of Artificial Intelligence for defense applications, touching on
data in the cybersecurity realm.

Navigating AI’s Considerable Strengths and Weaknesses for Defense Applications ,
By Mr. Raouf Dridi and Mr. Steve Reinhardt

CrossTalk - November 2024 4

It’s not just about visible clouds but layers upon layers of swirling gases, storms, and jet streams
moving in every direction. Modern analytic frameworks and Large Language Models (LLMs) are like
advanced aviation systems that allow us to fly through these complex layers, effortlessly analyzing
the data-rich air around us. Yet, amidst this abundance, the challenge lies in navigating ever-changing
weather patterns to find those perfect storms that lead to valuable insights and mission success.

Synchronization: Aligning Our Flight Paths

In this roiling data atmosphere, data synchronization is like ensuring all aircraft in a formation operate
with harmonized flight plans and real-time updates. Just as pilots rely on synchronized instruments to
maintain formation integrity and prevent collisions, our Programs of Record find value in synchroniz-
ing data strategies, detailing what they will collect and store, and how it can work with others. Without

As a new Air Force 2nd Lieutenant, data was like thin,
high-altitude air—scarce and hard to grasp. We relied on
basic tools like Visual Basic and Access, much like pilots
depended on antique and limited instruments. Navigating
through clear but empty skies, the lack of data made our
missions uncertain.

As I became a Captain at the Pentagon working on critical
programs, the metaphor shifted. Data was like scattered
clouds—isolated pockets drifting without organization.
These clouds held valuable insights but required immense
effort to locate and interpret, often needing expensive
database and analysts. To adapt, we had to climb to differ-
ent altitudes, learn new skills like Python and web devel-
opment, adjust our course, and venture into uncharted air-
space to collect the data needed for true mission insight.

Today, data is as ubiquitous as the atmosphere itself,
enveloping us like the dynamic clouds of a hurricane.

this alignment, we risk miscommunication, operational disarray, waste, or entering a dense mental
fog where we believe something untrue. Synchronization promotes understanding—combining data
from different models so our programs navigate with the same information, enabling coordinated and
effective decisions.

Security: Shielding Against Data Turbulence

The skies have their perils. Turbulence, lightning storms, and unexpected weather fronts symbolize
cyber threats that can disrupt missions. Pilots trust in the resilience of their aircraft and instruments
to withstand these challenges. Similarly, we’ve learned to fortify our data systems against adversar-
ies who seek to exploit vulnerabilities, much like hostile forces in the airspace. In this era of AI and
state-sponsored cyber actors, we must protect access as well as ensuring data integrity to prevent
poisoning our models or decision loops. Conversely, we must reduce the weight of our aircraft to be
faster during storms and be smarter with how we use security approval checklists that take months—
these can weigh us down while providing minimal improvement. Building a culture of security into
data processes gives us the speed and agility to outrun coming storms.

Standardization: Speaking the Universal Language of Flight

Aviation relies on universal standards—common protocols for communication, navigation, and safety
procedures. Without these, the skies would be chaotic and dangerous. In data, standardization allows
systems and units to “speak” seamlessly—through Application Programming Interfaces (API), data
dictionaries, machine-to-machine protocols, and unified data platforms. It ensures data from one
source can be understood and utilized by others, much like pilots from allied countries coordinate
through shared protocols. New AI tools help us find discrepancies or reduce costs for our data to fly in
formation.

Charting the Course Ahead

Our journey through the evolving data skies is about mastering the complexities of this dynamic atmo-
sphere. We must harness technologies to synchronize data, ensuring our operating picture is up-to-
date and trustworthy. Robust cybersecurity measures are needed to protect against threats—both
in access and in trusting our data and algorithms’ integrity—ensuring data streams remain clear and
uncompromised. We must commit to standardization, adopting common data languages and proto-
cols that enable seamless collaboration.

In this issue of CrossTalk, authors discuss
many themes in regards to data. Dan
Ruef explains how users must be able to
analyze and manipulate data before the
true benefits of data can be realized. Alex
Stringer, Geoffrey Dolinger, Asad Vakil,
Joseph Karch, and Timothy Sharp exam-
ine the current state of data within the DoD
and offers solutions to better use data in the
future. Raouf Dridi and Steve Reinhardt detail
the considerable strengths and weaknesses of
Artificial Intelligence for defense applications,
touching on data in the cybersecurity realm.
Alejandro Gomez discusses engineering security
into Application Programing Interfaces to ensure
they work correctly and the data inside the pipeline

is protected.

The Publishers’ Choice articles amplify topics previously touched upon in other issues of CrossTalk
but elevate the status of data within them. Elbert Dockery elucidates on the gap between software
and hardware, including the human element that keeps this gap wide. Linda Wright describes the
importance of cyber resiliency in operating environments.

Embracing the Infinite Horizon

The data atmosphere is vast and ever-expanding, like the boundless skies pilots have explored for
generations. Each layer offers new opportunities and challenges. Artificial intelligence and machine
learning becomes our co-pilot, helping us process and interpret the overwhelming influx of informa-
tion. They won’t make all the decisions but will enhance our roles if we learn where and when to trust
them.

But technology alone isn’t enough. It’s the human element—the skill, intuition, and adaptability of our
service members and contractors—that enables us to navigate this complex environment. By foster-
ing a culture that values data as a strategic asset and encourages continuous learning and a security
mindset, we empower our people to find those perfect storms that lead to groundbreaking insights,
decisive action, and true understanding—even during dark skies and dangerous storms.

- Jay A. Crossler, Technical Fellow MITRE Corporation, MITRE

CrossTalk - Month 2023 Month 2023 7

Call For Articles
If your experience or research has produced information that could be useful to others, Crosstalk can
get the word out. We are specifically looking for articles on software-related topics to supplement up-
coming theme issues. Below is the submittal schedule for the areas of emphasis we are looking for.

Keeping up with the Cloud
February 2025 Issue

Submission Deadline:
November 30, 2024

Strategizing with Agility
May 2025 Issue

Submission Deadline:
March 15, 2025

Future Technology: The Long
Haul
August 2025 Issue

Submission Deadline:
June 15, 2025

Please follow the Author Guidelines for Crosstalk, available at the APAN or DTIC site.

We accept article submissions on software-related topics at any time, along with Letters to the Editor,
Open Forum, and BackTalk. To learn more about the types of articles we’re looking for, please visit
the above sites or contact us by email or phone

Contact Us
AFSC.SWSWDE.Crosstalk@us.af.mil

By email
Lennis L. Burton, (801) 775-3262
Siria L. Snounou, (801) 777-4734
Destinie Comeau, (801) 775-3246

By phone

CrossTalk - November 2024 8

Introduction
Higher volumes of data are now able to be efficiently transferred and stored from a wider range of
sources and connected to more significant computing power than could be conceived of when the
term “big data” was first coined in the 1990s [1]. The meaning of “big data” has evolved alongside
these technological advances, but there are many interpretations of the term which can cloud discus-
sions. In this article, “big data” refers to a large volume of data (such as billions of individual records
or terabytes of storage required per day) and/or multiple data sources that must be stored adjacently
for correlation, but which cannot be standardized into a single schematic record definition.

Achieving and maintaining situational awareness of network activity is an essential and enduring
problem for organizations to detect, mitigate, and respond to threats. Big data is needed for cyberse-
curity due to the ever-expanding set of data sources populated from different vantage points describ-
ing activity on enterprise networks and the evolution of threats to networks, hosts, and software
supply chains. Collecting and analyzing data for security mon-
itoring purposes requires significant financial, technolog-
ical, and personnel investments. Effective enterprise
monitoring requires synergy between network and
host operations, security operations, systems
integrators, and data analysts. Detections and
workflows must have targeted purposes as an
overwhelming majority of events and records
are from benign and expected behaviors.
Systems need to be architected to satisfy a
broad group of stakeholders with the end
goal of detecting and mitigating threats.

Big data offers many benefits, but users
must be able to analyze and manipulate it
efficiently in order to realize those benefits.

CrossTalk - November 2024 9

Breaking the “Single Pane of Glass”
Misnomer

The primary goal of any big data solution is to allow its users to efficiently and effectively gain insights
from all the data that has been collected. As a way to simplify things for stakeholders of a big data
repository, many program architects often speak of the desire for a “single pane of glass” which is the
idea of providing analysts a single platform to get what they need. A single platform for analysts is an
excellent design feature, however the term “single pane of glass” can also be interpreted as a desire
for the exact same interface and mechanics for any data source, and everything in between. This
is different than a single view made up of targeted query results from multiple data sources placed
into a single dashboard. The ambiguity of the meaning of the term can yield misaligned engineering
assumptions, which can lead to inefficiencies, unmet analyst needs, and restrictive requirements.

The first problem is that there is no single pane of glass that will allow users to query whatever they
want across many big data sources and efficiently return meaningful insights. Second, the term is
an oversimplification that leaves stakeholders unclear about how the system will work and what the
requirements are. There is an important difference between shielding users from engineering com-
plexities and hiding crucial details of the data or system that can be leveraged for increased effi-
ciency. A window on a space station is a single pane of glass for viewing the cosmos, but without the
ability to aim, zoom, or interpret different types of data, little is gained from the easily accessible view.

Capabilities can be built where analysts use the same interface and computing platform for all data
sources. This can be considered a single pane of glass from the users’ perspective. However, to effi-
ciently extract information from a variety of sources, users must focus a second pane of glass to get
what they need. The interface through which data is made available makes for a second single pane
of glass from the data’s perspective. Users will be more effective if they can aim and focus their view
to gain insights from vast quantities of data, similar to a telescope.

Telescopes collect and return data in targeted and focused ways. Upon receipt, that data is able to
be analyzed in full-featured processing environments that meet analysts’ computational needs. This
multi-stage process provides analysts what they need: efficient and targeted retrieval paired with the
freedom and power to investigate. The cyber data storage and analysis industry is mature, with many
excellent commercial and open-source tools capable of handling a variety of record and data types
and formats. When paired and configured correctly, analysts can have the right mix of efficiency and
flexibility to perform their workflows successfully.

When executing a workflow or a threat hunt, analysts usually know which data source they need. Part
of the single interface presented to them must include a data source selection where backend tooling
handles the details of accessing the chosen data source. The data source selection should also allow
analysts to specify parameters so that they can take advantage of efficiencies available in a particular
data source based on how it is stored. For example, users of big data storage and analysis tools from
the SEI’s NetSA Security Suite, know that queries return much more quickly when they specify a time/
date range, the sensor(s) needed, and the directionality of the flow records they are interested in [2].
Interfaces which hide these crucial details in an attempt to make all data sources look the same actu-
ally limit analysts’ productivity. As analysts are being asked to perform evermore complex analyses,
they can also handle data source specific mechanics.

To simplify analyst workflows, data system architects should think of building telescopes directly into
data sources, even multiple telescopes, all returning their results via a common interface for powerful
and flexible processing.

CrossTalk - November 2024 10

Deliberate and Extensible Ingest
Pipelines

When high volumes of data from many different data sources all flow to one place, deliberate and
extensible ingest pipelines are vital to keep data organized and usable. These pipelines provide
well-structured opportunities for filtering, extract transform load (ETL) processes, data extraction,
streaming analysis, and functionality reuse. They also lower the amount of time required to add a new
data source. Anything that is done to the data “on the way in” saves load on the repository when you
don’t have to do it later using batch queries. An ingest process that is designed and instrumented well
facilitates faster awareness of data outages and provides analysts up-to-date information about what
data is being collected and from where.

Having specified stages of an ingest pipeline with clearly defined responsibilities prevents each data
flow from being customized and limited to what is currently needed. Building known checkpoints and
mechanisms to pass data through them provides a structure to which functionality can be added as
needs arise.

Powerful ingest pipelines facilitate:
•	 Filtering and routing of data
•	 Analyst-specific data feeds
•	 Data format conversions
•	 The building of workflow driven caches or quick lookups
•	 Collection of baseline information during ingest for up-to-date situational awareness without

the use of periodic batch queries
•	 A mechanism for real-time alerting and utilization of security indicators
•	 A standard toolset for data reduction and manipulation
•	 A path for applicable data to reach visualization tools

Tailored Big Data Solutions
Big data capabilities, especially at government scale, can be held back by an aversion to customized
data and internally developed solutions. Solutions need to be tailored for their purpose to provide
analysts what they need with sufficient context. This may mean a customized ETL process that pre-
pares the data for long-term retention, or a solution providing targeted data feeds to advanced ana-
lytic processes.

Analyst workflows and targeted mitigations must drive the tailoring of big data systems. If analytic pro-
cesses typically begin with an indicator, then the system can build caches for quick lookups to quickly
discern whether that indicator is present in the repository. This saves analysts time waiting for broad-
scoped queries to return what has a high chance of being an empty result. A fast-returning targeted
data store that quickly gives the analyst the specific location (usually timestamps and sensors) of the
data they seek, if present, is immensely valuable and not overly difficult to build.

A tailored ETL process can also be used to reduce the data down to a level that is truly needed for
long-term retention, or to change the data format (e.g. JSON, CSV, IPFIX) to one requiring less
space. Data reduction will either save money or extend retention time. For instance, if there are net-
work connections such as incomplete TCP handshakes where the only useful information for the long
term is the external IP address, then saving that in a cache to maintain a record of its presence may

CrossTalk - November 2024 11

be all that is needed, allowing for the full network flow to be dropped and not stored. To understand
use cases such as this one, it is essential to have discussions with all stakeholders about why they
need particular classes of data, and what they will do with them. Sometimes the mentality of “store
every byte of data forever” is correct, but it can also bloat big data solutions and perpetuate the aver-
sion to customized and tailored capabilities. Exploring the uses of various data allows systems to
intelligently store that which must be retained while reducing the noise and carrying costs of storing
non-critical data.

Determining generalities from detailed use cases and requirements can yield benefits for design and
implementation of a system architecture. An example of this could be that targeted detections to gain
insights of the current state of the network never go further than six months back, and that any refer-
ence to older data is just to determine the presence of an indicator. This insight informs the decision
to reformat and re-organize data older than six months into something more efficient both in storage
size and query response time. Informed generalities may support formal decisions on the retention
time of different datasets, which directly affects cost and analyst utility.

The mature tooling and platforms available from the cyber data field provide building blocks for big
data systems that are very flexible and powerful. However, they cannot provide the optimal data con-
figurations and customizations to provide analysts what they need most effectively. Enterprise cus-
tomization of extensible data pipelines and fully utilized configuration options for the building blocks
allow the system to remain agile and evolve with new usage patterns and workflow needs. Providing
mechanisms to tailor data at different locations is akin to utilizing a distributed system of valves to
deliver resources rather than one long static pipe.

Application and Infrastructure Logs
Are Not Specifically Designed for
Security Purposes and Long-Term

Retention
Traditional host and network-based sensors export data designed for threat hunting. Application and
infrastructure logs, however, are built for troubleshooting, testing, event logging, and proof of service.
While they can certainly be used for threat hunting, incident response, and situational awareness,
their original form is likely not ideal for long-term retention. As a result, storing these logs in their origi-
nal form for long periods of time can lead to inefficiencies for both resources and analysts.

As an example, application or infrastructure logs may supply a field for an account ID. This is usually
a long string of characters in every record. This is valuable when troubleshooting, but not when ret-
roactively analyzing the data for threats, as it is likely to be the same for every record. A value for the
sensor itself, or the organization, is likely more valuable and requires less storage space.

It’s essential to understand the purpose of storing these types of information and what analysts will
do with them. Some logs may be used as primary sources to identify potential threats and incidents
that require further inspection. Others are more suited to providing organizational context to alerts or
confirmation of an incident or threat.

After enumerating the utility of retaining and analyzing a particular data source, the next step is iden-
tifying the form in which these records should be stored. Some sources will need to have all their data

CrossTalk - November 2024 12

stored in their original form. Some may need to have indicators extracted or lookups and conversions
identified. Others may just need to have daily summaries generated for reference later. Whatever the
usage, a tailored storage solution facilitating ease of access by analysts is paramount.

Purpose-driven utilization of application and infrastructure logs coupled with a strong ingest pipeline
can reduce the need to retain the entirety of application logs and can allow for:

•	 Streaming analysis to look for changes, additions, or anomalies
•	 Creation of caches of essential information for automated enrichment
•	 ETL for long term retention and/or assimilation with traditionally used data sources

Conceptual Baselining
The objective of baselining is to understand and define what is normal or expected about a dataset.
Statistical baselining provides the opportunity for automated anomaly detection with degrees of confi-
dence based on mathematical models.

However, the connection between statistical baselines and human-level events can sometimes be
opaque. For example, there is a different level of understanding and situational awareness required to
convert “the range of users updating infrastructure is 4-6” to “the only people updating infrastructure
are on the Infrastructure Admin Team.”

The first phrase is simple, collected data; the second phrase is an example of conceptual baselin-
ing, which is an understanding of how a network, host, or infrastructure should behave, and how
that behavior translates to the data collected. Data from a sensor or log is a translation of an event
initiated by a human or a system into a structured record. In order to respond with a mitigation, the
results of the analysis of those records must then be translated back to a human- or system-level
event.

Taking the time to get a feel for the data and maintain conceptual baselines pays dividends during
incidents. It’s easier to respond to a statistical anomaly such as a seventh and eighth user updating
infrastructure when it’s known that the first check should be to the Infrastructure Admin team to see if
they added employees. Policies are typically written at the human and system level. The translation
from data into human and system events is required for verification and enforcement of those policies.

Providing data and insights in a way that can turn “normal” into something described in words has
immense value and provides significant context for analysts. It also leads more directly to mitigations:
the end goal of many threat hunts.

Enrichments
It is essential to provide data enrichments to alerts and analytic outputs that allow threat hunters to
quickly diagnose whether or not an event is suspicious. Enrichments must be data source and con-
tent-specific to be used effectively. When analysts are provided the appropriate context around alerts,
they can internalize and more easily discuss what may have occurred. Upgrading “these five IP
addresses…” to “two IT servers and three laptops in the finance department in the Pittsburgh office…”
humanizes the events for analysts.

Automated enrichments can be used to answer standard initial questions that stem from an alert.
Question such as: Have we seen this entity before? Which part of my organization is affected? What
information is known about the entities involved?

CrossTalk - November 2024 13

Type Description Typical
Sources

Events Events or information extracted
from related data sources

Raw telemetry such as netflow,
host data, firewall logs

Entity Information about machines,
hosts, or user accounts

Geolocation, ASN Information,
pas-sive DNS, identity manage-
ment, or-ganizational information

Historical Related information to the
event in question: its frequency,
other events related to entities
involved, other events relating all
entities

Profiles or baselines of historical
activity, automated queries of
repositories

Threat Reputation scoring, attack tech-
nique identified, correlation with
other events and alerts

Third-party threat feeds, indicator
sharing organization feeds, inter-
nal alert tables

Figure 1. Suggested Types of Data Enrichments [3].

The faster analysts can triage alerts and report, the sooner mitigations can be initiated. Enrichments
save time by answering common analyst questions before they’re asked.

Conclusion
Big data environments must adapt and grow with evolving data sources and analyst needs. System
architects should embrace the complexity and variation to provide efficient and effective mechanisms
for analysts to elicit insights from vast quantities of data. They should design “telescopes” with the
dexterity and power to make a wide variety of data available to analysts in a consumable way in a
single location. Deliberately staged ingest pipelines will facilitate agile data collection and provide
a well-organized opportunity for the automation of currently manual workflows, while reducing the
amount of repository data queries. Full-featured and extensible ingest pipelines enable the tailoring of
data to be security relevant and structured for both long-term storage and for data fusion for greater
situational awareness. The deeper the analysts’ understanding of their data sources, the quicker they
will triage alerts and identify potential threats. The more questions analysts can pose from their under-
standing, the more opportunities there are for effective workflow automation, data enrichment, and
decision making, leading to mitigations, which should be an essential goal of every threat hunt.

References
[1] Lohr, Steve. “The Origins of ‘Big Data’: An Etymological Detective Story.” The New York Times,
The New York Times, 1 Feb. 2013, archive.nytimes.com/bits.blogs.nytimes.com/2013/02/01/the-ori-

CrossTalk - November 2024 14

gins-of-big-data-an-etymological-detective-story/.
[2] NetSA Security Suite. Software Engineering Institute. 2024. tools.netsa.cert.org.
[3] Hutchison, Sean. “Dealing with Noisy Behavioral Analytics in Detection Engineering.” Software
Engineering Institute. October 30, 2023, insights.sei.cmu.edu/blog/dealing-with-noisy-behavioral-ana-
lytics-in-detection-engineering/

Acknowledgements
The following markings MUST be included in work product when attached to this form and when it is
published.
For purposes of double anonymous peer review, markings may be temporarily omitted to ensure ano-
nymity of the author(s).
Carnegie Mellon University 2024
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International
License. Requests for permission for non-licensed uses should be directed to the Software Engineer-
ing Institute at permission@sei.cmu.edu.
CERT® and Carnegie Mellon® are registered in the U.S. Patent and Trademark Office by Carnegie
Mellon University.
DM24-1178

About the Author
Dan Ruef is the Technical Manager of the NetSA team
in the CERT Division of the Carnegie Mellon Software
Engineering Institute. He leads the research and engi-
neering efforts to build capabilities, highlighted by SiLK,
that provide network situational awareness by sensing,
storing, and analyzing traffic for threats both on-prem-
ises and in the cloud. Dan has over 15 years of profes-
sional experience in cybersecurity and software engi-
neering.

Dan Ruef

Network Situational Awareness Technical Manager

Software Engineering Institute

druef@cert.org

CrossTalk - November 2024 15

Introduction
The 21st century is an age of highly interconnected systems and broad data availability. As improve-
ments in technology have led to increased processing power and low-cost data storage, Big Data
has quickly become a topic of discussion in the national consciousness. Policymakers have keyed-in
on the potential of Big Data when developing their vision for future weapons capabilities. This has
led to the rise of a certain philosophy: “Data is all you need.” With some justification, this mental-
ity has subconsciously permeated throughout the Air Force (AF) and wider Department of Defense
(DoD) unchallenged, as reflected by several Big Data-related, strategic policy documents [1] [2] [3]
[4]. These documents have provided the groundwork for transforming the structures of the DoD into
a data-centric organization, and the first step in this process has been addressing the challenges of
building physical, tangible means of sharing data within the organization using Big Data. This neces-
sity for rapid change has become more pressing with the recognition that the DoD must adapt to an
environment of Great Power Competition.

Recent technological advances made by China and Russia have produced growing anxiety among
strategic policymakers. In response, DoD and AF leadership has refocused on developing capabilities
that more efficiently and effectively utilize and distribute data among decision-makers and warfight-
ers. The DoD has acquired vast quantities of operational data throughout its history. The hope among
policymakers is that this data will be a strategic asset to affect positive outcomes on the battlefield.
For example, shortening the sensor-to-shooter kill chain, adding Artificial Intelligence and Machine
Learning (AI/ML) to Command and Control (C2) systems, and building predictive maintenance and
repair systems all require storing, processing, filtering, and training large datasets. These kinds of
strategic capabilities are challenging to develop from a networking architecture, software, and hard-
ware perspective, and leadership wants expedited development of these models. That pressure has
produced a desire to use generalizable methods for approximating systems based on patterns in data
rather than relying on evaluations or derivations from experts. There is considerable value in this type
of approach, as it can minimize the time and costs required to develop new models. However, it is
putting a strain on the DoD’s current data infrastructure and there are, increasingly, scenarios being
encountered in which little to no high-quality, relevant data is available. In addition, it has contributed

CrossTalk - November 2024 16

to the false assumption that data availability is somehow more important than system design. Several
recent articles have echoed this point, arguing that both joint all-domain kill chains [5] and collabo-
rative combat aircraft [6] require data processing and data management in order to develop actual
capabilities. These challenges produce significant risk in the age of Big Data, and the stakes for the
U.S. and its allies are high. This article presents an overview of common challenges encountered in
Big Data systems and methods for mitigating those challenges.

Data Requirements in Modern
Systems

Before introducing Big Data’s limitations and solutions, it is important to provide an overview of
common data concepts and terms. Within the DoD, data is primarily used in the fields of modeling,
analytics, and AI/ML, so the discussion here will center on the role of data in those domains.

Data Quantity
The core requirement for large data systems is the availability of relevant data. The quantity of this
data plays a massive role in the performance of these systems, particularly in systems using Deep
Learning (DL) methods (models that use artificial neural networks) and Large Language Models
(LLMs). Data availability is commonly described by its volume and velocity. In this context, the term
volume refers to the amount of existing usable data for a given application, while velocity refers to the
rate at which new data can be generated [7]. Data volume is essential for the initial creation of models
and for conducting large-scale analytics to identify patterns and develop ML training functions. Veloc-
ity plays a central role in updating and evaluating existing models, as well as in certain ML techniques
that make use of real-time data during their learning process to better understand more interactive
environments. While these two aspects of data quantity pose a problem for collection and storage,
it is ultimately increasing the amount of quality data that makes identifying and learning the complex
trends in the data possible.

Data Cleaning
Data analytics and ML systems are very sensitive to the quality of the data they utilize. The quality of
real-world datasets can be reduced by factors like bias, missing or corrupted data, and poor scaling.
These can cause incorrect patterns to be identified in the data, thereby interfering with model devel-
opment and training. The term veracity is used to describe the quality of available data. Data cleaning
is an essential aspect of improving the veracity of a dataset. It refers to the removal or correction of
data that contains missing or corrupted values and ensuring all the training data is representative of
the problem the model is attempting to solve. The amount of cleaning that is required depends on
the application but is generally tied to the quality of the training data. This stands in contrast to the
concept of “just collect all the data,” and requires intelligent and purposeful collection of data. While
increasing the quantity of the data provides a benefit, it can quickly cause the cleaning process to
become unmanageable if the quality of the data is poor.

Generalizability
Recall that the goal of most Big Data applications is to develop approximate models for complex
systems from patterns found in data. In essence, that process assumes that you can take a subset
of example scenarios and create a model that works across a much larger range of scenarios. In the

CrossTalk - November 2024 17

fields of Big Data and ML, this concept is referred to as generalizability, which is used to describe how
well a model works when it encounters scenarios that it has not directly seen before. The ability of a
model to generalize well in a given application depends heavily on two key aspects of the data used
to develop that model: value and variety. Here, value refers to how well a given set of data shows the
trends underlying it, while variety refers to the diversity of relevant scenarios represented. The more
key scenarios represented in a dataset, the easier it is for a model to identify the critical features in
each of those scenarios, and the better a model trained on that data will be at generalizing.

Data Labeling
Arguably, one of the most challenging requirements for the use of large datasets in modern systems
is the need to label the data. Many of the more popular uses of data, like ML, assume that large
quantities of data can be used to generate an approximate model of a system. However, in order to
develop that model, they must be trained. Models are trained by being provided example inputs, pro-
ducing outputs, and then having their model parameters updated based on how good the outputs are.
This necessitates the definition of the desired output, known as a label, for each input sample used
for supervised learning. Labelling can range from dividing the training data up into different classes,
such as organizing sensor data by the platform it was collected on, to adding additional informa-
tion, such as exact location of a building on an aerial photograph. It is typically time-consuming and
requires some knowledge of the target application space. Given the amount of stored data, labeling
can be an intensive process but is ultimately critical in making data usable for DL systems.

Limitations: The Existence of
High-Quality, Representative Data

In addition to volume, velocity, and variety, policymakers who are addressing the challenges of Big
Data need to consider the quality and relevance of their datasets. AI/ML models excel at learning
and identifying labeled patterns and features. However, when faced with unknown scenarios, their
performance significantly decreases [8]. This characteristic is extremely relevant for military policy-
makers because, for many wartime applications, the scenarios encountered by the AI/ML system will
be subject to influence by enemy actions. This could involve countermeasures, deception, or com-
pletely new and unknown scenarios. For example, if a model is trained to detect pattern of life activ-
ity in intelligence reports, but the intelligence reports are all biased towards reporting about enemy
training exercises, then the model might be unable to accurately classify the pattern of life behavior
during actual wartime operations. This issue was directly addressed by a 2024, five-volume study by
the Rand Corporation [9][10]. The study, titled Understanding the Limits of Artificial Intelligence for
Warfighers, dealt with cybersecurity, predictive maintenance, wargaming, and mission planning. The
study’s conclusions on two of the topics, cybersecurity and predictive maintenance, are particularly
relevant to this issue.

In the cybersecurity domain, there has been a strong push to integrate AI/ML into defensive systems
- Intrusion Detection Systems (IDS) - in order to prevent network attacks and malware. Integration
would require models to be trained to detect cyberattacks, thereby necessitating large volumes of
labeled network traffic training data to identify benign and malicious behavior. IDS containing AI algo-
rithms can utilize statistical methods to categorize, cluster, and classify network traffic such that the
algorithm can identify novel forms of malicious traffic. However, this ability is limited, and models must
constantly be retrained to identify current threats, or otherwise fall victim to data drift [9]. Data drift
occurs when the data a model encounters deviates from the data it was initially trained on, thereby

CrossTalk - November 2024 18

necessitating retraining.

The extent to which the training set differs from actual threats encountered in service is another major
point of concern. The 2024 Rand study sought to directly investigate this matter to determine how
much this data drift would degrade the performance of an AI system within an IDS. The study utilized
two malicious network traffic datasets (created by the Canadian Institute for Cybersecurity) to train
two separate neural networks to identify malicious network traffic. These neural networks were tested
under two scenarios. The first scenario was a year-over-year comparison where each network was
trained on 2017 data and then tested on 2018 data. The second scenario examined a day-over-day
comparison, and it was designed to mimic the “historical training data” problem that IT professionals
actually encounter. The network was trained on historical data from a varying number of days, and
then it was tested against “live” traffic. For the first scenario, the models trained on 2017 data with an
80/20 training to test split were able to achieve 87% and 97% classification accuracy, respectively.
When these models were tested on 2018 data, the accuracy for each model dropped to 73% and
72%. The second scenario saw decreasing performance as the number of days of historical training
data increased, with approximately a 4% to 5% decrease in performance per additional day of histori-
cal training data [9][10]. These results show how training with historical data has limitations.

Conventional wisdom would assume that additional historical data would lead to improved perfor-
mance, yet this was not the case. The report detailed that training on historical data caused the neural
network to fixate on the outdated features of the data. As it was exposed to newer attacks, the mis-
aligned training resulted in poorer performance. These results show that, as policymakers deploy lim-
ited resources, they must bear in mind that historical data, while potentially useful, requires additional
system design considerations before naively being deployed to a training environment.

Predictive maintenance involves utilizing diagnostic tools that can pinpoint small reductions in effi-
ciency that may suggest the need for maintenance. In the Air Force, spare parts are often packaged

Figure 1. A visual representation of the role of data sci-
ence, human intervention, and AI/ML regarding Big Data.

CrossTalk - November 2024 19

together into Readiness Spares Packages (RSPs) which contain enough spare parts for an aircraft to
deploy for 30 days. The Rand Corporation study attempted to use A-10C aircraft data to test whether
AI/ML methods, a Long Short-Term Memory (LSTM), would improve upon traditional, Poisson distri-
bution-based estimation methods of part failure rates [10]. The study was able to access more than
a decade of historical repair data and component/part failure rates for the A-10C. They were able to
show that the LSTM did improve predictions on failure rates, but their final recommendations came
with warnings.

First, the group noted that certain parts had failure rates which were insufficiently represented in the
data, and the model was unable to make predictions as to the failure rate. Second, the report argued
that the historical data alone might not be sufficient to provide the basis for estimating wartime part
failure rates. The 2024 report referenced a 1995 study by investigating Air Force fighter repair and
logistics rates during Desert Storm. This study found that logistical planning for spare parts, electronic
warfare pods and munitions were frequently wrong when compared to peacetime planning estimates,
and the authors emphasize that often the estimates were substantially wrong [11].

The demand for parts and munitions were specific to the theatre’s conditions. Aircraft part break rates
were linked to how aircraft were used in the different phases of the conflict and the different mission
demands. This analysis reemphasizes the concern that an AI/ML model trained on peacetime data
will be insufficient to predict the unknown scenarios that will occur should the U.S. Air Force enter a
conflict with a near-peer adversary who has the capability to degrade communications systems and
physical, logistics systems (like runways and warehouses) with cyber-attacks and long-range cruise
and ballistic missiles [12] [13]. Additionally, aircraft will be flown differently during wartime. Longer
sorties and flight hours that stress avionic systems and incur battle damage will change the demand
for replacement parts [14]. To quote directly from one of the 2024 report’s key findings:

“AI cannot alleviate the scarcity of wartime data. It is unclear whether RSPs developed using
peacetime data will be adequate for wartime operations. Moreover, one of the main limitations
of AI for this application is its inability to estimate truly rare events, which might be more likely
during wartime operations. As a result, different approaches to modeling AI could be required
to deal with these changing circumstances. However, regular retraining and updating, which
is possible with an AI model, can ensure the adaptability of these models during wartime” [10].

The DoD faces many challenges in making effective use of its data over the coming years. There is
a lack of available data for many applications, and much of the data that is available is not relevant
or currently in a usable state. Major investment will be required to correct for these issues. There
are also challenges associated with creating infrastructure for collecting and automatically cleaning
and labeling data. Handling large quantities of data also puts a strain on computing systems and
networks. Techniques that reduce data requirements and improve the overall value of available data
will play an important role in addressing these challenges. Figure 1 provides a visual flow of these
challenges and the coordinated roles that data science, human expertise, and AI/ML must balance to
utilize Big Data for effective capability.

In this paper, we present three commonly used approaches to addressing inherent risks in the phi-
losophy of “data is all you need.” The first will address methods for using and preprocessing real data
to improve model performance. The second will address the general topic of data synthesis. The last
will address using smart system design as a method to offset or reduce data requirements. Individ-
ually, these approaches serve as effective methods to improve model performance, but they are not
mutually exclusive and can be used together for compounding benefits in many situations. While DL
models are capable of learning a lot without data augmentation, synthetic data, or smart design, the

CrossTalk - November 2024 20

application of one or more of these methods can drastically improve model efficiency and reduce the
amount of necessary training data [15]. Determining which of these method(s), if any, is optimal to an
application is dependent on the application’s data and objectives. Applications in which the domain
the data is from is well understood, such as wireless communication, smart design, and preprocess-
ing, may be more desirable[16][17]. In situations where data is either scarce or sensitive, synthetic
data may be the better approach [18][19].

Solutions
1: Data Augmentation and Preparation Techniques

Data Augmentation
One of the primary ways that large data requirements for DL can be mitigated is through data aug-
mentation. This term refers broadly to methods for artificially generating data from an existing dataset
and is relatively straightforward. First, assume that a model must be developed such that it learns
to accurately model patterns in data and generalizes well. Then, given some quantity of data that is
assumed to contain relevant patterns the system needs to learn, identify modifications that can be
made to that data to produce a larger dataset.

For a computer vision application, consider a dataset of images. If the image set is small, the model
may not learn the desired input-output relationship or worse, overfit to the training data. A simple
augmentation method for images might take the form of duplicating and then randomly rotating each
image in the dataset. This results in an artificially expanded dataset, with the new entries still contain-
ing relevant features and patterns but with different spatial configurations.

Data augmentation plays a critical role in improving the performance and robustness of DL models.
It can take a variety of different forms depending on the type of data being augmented and the target
application. Selecting the right method is a critical part of the data preparation process and should be
considered early in development. There are several categories into which data augmentation meth-
ods can fall: data alteration, interpolation/extrapolation, feature manipulation, and model-based.

Data alteration involves taking existing data and generating new entries by adding noise, transform-
ing data entries, or eliminating portions of them. These methods can help to increase the volume of
data available and to make models more robust during training. However, it does little to improve the
diversity of a dataset, can reduce the overall fidelity of a model trained on it, and doesn’t improve the
variety of the training data set.

Interpolation and extrapolation methods, commonly used on sequential or time-series data, involve
approximating new data entries by fitting a mathematical function to the entries. That function can
then be used to pad entries within a sequence (in the case of interpolation) or add entries to the
beginning/end of the sequence (in the case of extrapolation). Like data alteration, these augmentation
methods can increase the volume of available data but don’t add significant variety.

Feature manipulation methods focus on altering feature level values during the model training pro-
cess, rather than altering the input data itself. This requires direct integration into the model, system-
atically injecting noise or making alterations to feature vectors. These methods can be applied regard-
less of data type or application space but are especially beneficial when each data entry is large (as
is the case with images or videos). This is because the dimensionality of a feature vector is typically
small, making feature manipulation more efficient in these cases than data entry manipulation. Con-

CrossTalk - November 2024 21

versely, feature sets learned from large datasets are typically not as well understood, so there is
inherent risk to modifying them as a means to augmenting the training process, potentially reducing
model fidelity.

Model-based data augmentation is an emergent form of augmentation that has garnered significant
attention from the research community over the last decade. It uses generative DL models (such as
Variational Autoencoders or Generative Adversarial Networks) to create entirely synthetic data entries
based on the features contained within an existing dataset. Generative models are typically designed
with two primary components: the encoder and decoder. The encoder learns important patterns in
data and maps them to a latent feature space. The decoder then samples a feature vector from that
space and uses it to generate an output. These models have been adapted for data augmentation by
training the decoder to produce outputs of the same form as the desired data entries. The assumption
being that the decoder can identify the main dataset features and can use the encoder’s latent vec-
tors to produce realistic generated data as its output.

Data Preparation
Some of the more costly tasks required to start working with large datasets are data labeling and data
cleaning. Both labeling and cleaning can be completed by a human, but this becomes expensive and
time consuming as the size of the data grows. It is increasingly important to improve the efficiency
of the labeling and cleaning process as the volume increases, especially if the velocity of new data
is high. If all of the collected data is required for training, there exists a tipping point where the time
it takes to clean and label the data is slower than the rate at which new data is generated. In these
cases, it is important to have more efficient cleaning and labeling techniques. Automated techniques
(like classical heuristics, expertly designed algorithms, ML models, and customized reward functions)
can often speed up the process of creating labeled, high quality data sets.

Some data cleaning can be automated straightforwardly by just setting up heuristic requirements for
the quality of the data. Any data that does not pass this quality heuristic can then either be removed
or tagged to be fixed by another method. This reduces some of the burden of sifting through the data,
but still requires intervention in the event the corrupted data needs to be repaired. Depending on the
domain of the data, existing ML models may be available that can help correct corrupted data. There
are inherent issues with using ML to correct data (that you are using to train other ML models), but, if
done carefully, it’s possible to clean the data quickly and efficiently.

Automatic Data labeling is more complicated than cleaning and fundamentally can’t be fully auto-
mated by DL. However, semi-supervised and unsupervised learning methods can be used to rapidly
automate most of the labeling. ML can also be used in tandem with human input to actively learn
whenever the labels it generates are ambiguous. If a dataset’s domain is well understood, an expert
may be able to define algorithms that automate portions of the labeling. Algorithmic labeling will work
to label large parts of the data, but if this algorithm were perfect, there obviously wouldn’t be a need
for training a ML model. Both the ML and traditional algorithmic approaches can be used to reduce
the amount of data that needs to be labeled but can’t completely provide the labeled data that super-
vised learning needs [20][21].

Machine learning contains different methods of training models. Supervised learning requires labeled
data and achieves high accuracy rates after training on this data, but there are other methods which
can forgo the need of labeled data. Methods such as unsupervised learning and Reinforcement
Learning (RL) can be trained without the need for labeled data. Unsupervised techniques can do this
automatically with some success but have limited applicability in real systems. Reinforcement learn-
ing, on the other hand, has shown considerable promise but requires additional steps to be effective.
RL is a machine learning domain that has models learn based off the impact of their actions on a rep-

CrossTalk - November 2024 22

resentational or live environment. As a result, RL does not use data directly but relies on either analy-
sis of data and/or insights due to other data science and ML methods applied to data (see Figure 1).
This environment is dynamic and changes as a result of actions taken by a model.

The second vital component for RL based systems is a viable reward function. The reward function
needs to be purposefully designed, as this is what will guide the learning algorithm to find the model
that best fits the challenge-based measures of success. Once a good reward function is derived and
a model has learned robust and viable behavior from the representative environment, then the model
can be trained continuously while interacting with the real world [22][23]. This is a massive benefit to
the usage of Big Data, as some of this data gathered can be used instantly. Additionally, RL methods
can be used with human input to be fine-tuned with domain expertise.

2: The Role of Analysis and Synthesis in Reducing Data
Dependency

Sometimes existing data is not enough, even after attempting to augment it. Perhaps owing to the
data having too much noise or being inconsistently varied such that the ML model has difficulties in
learning the trends or maybe there just isn’t enough data to sufficiently train a model. In these cases,
more effort must be placed on understanding the environment the training data was gathered from.
This additional study of the problem space leads to a better understanding of the environment con-
taining the problem, which can be used to conduct a first principle approach to training ML systems.
Deeper understanding of the environment the data is from can be combined with physical and mathe-
matical rules to create fully synthetic data, allowing the ML model to learn on perfect, noiseless data.
After training on synthetic data, the models can then be tested on a smaller set of real data, verifying
the model’s performance.

Analysis
The first step in generating synthetic data is to understand where and how the data was generated.
This usually requires an expert in the field to perform some analysis of the problem space. As most
problems are grounded in reality, there are usually some basic principles upon which the complex
trends in the data are based, even if the data is highly complex. There are aspects of the analysis
process that must be done carefully, such as identifying and removing biases. Also, sufficient analysis
must be done to reach a basic enough understanding to pull out the first-principles rules of the data. If
these first principles can be derived through extended analyses of existing data, they can be used to
generate clean and versatile data.

Data Synthesis
Once these first principles are derived, they can be used to synthesize data. This process, depicted in
Figure 2, involves the generation of data from a simulated environment designed using a combination
of statistical analysis of real data and expert knowledge of the application domain. When simulating
these first principles, it is important to focus on the different distributions or categories of data that are
important to the model. It is imperative to make sure that each scenario that the model should cover
is included in the simulation, otherwise the training data will be blind to those categories. This process
is also used for the representative environment required for successful RL model development.

CrossTalk - November 2024 23

There are, of course, risks and challenges in utilizing synthetic datasets for AI training. These can
include inheriting data distribution biases, the manifestation of errors owing to inaccurate base data,
insufficient noise levels, over-smoothing, neglecting temporal and dynamic aspects, and inconsis-
tency. With that in mind, a key advantage of using synthetic data is that it also allows for the control
of bias. Bias occurs when there is some unintended pattern in the data due to collection methods or
analysis. Real data isn’t necessarily immune to bias, as seen in instances where AI inherits racial or
gender biases from its training data [24][25]. The higher complexity and more numerous variables
of real data can make noticing such biases difficult. While synthetic data is still susceptible to bias, if
the expert generating the data understands the relevant type of bias, it is trivial to control and remove
bias when setting up the data synthesizing process. Additionally, synthetic data also allows the gen-
eration of noiseless data. Even when ML training on noisy data is necessary, it is simple to add spe-
cific noise to the training data during generation. All of these methods add flexibility to synthesized
data. But data generation helps alleviate another problem: data drift. Since data drift is a change in
the input or output data over time, it is infeasible for collected data to catch these trends. Not only
can synthesized data preemptively ready models for this data drift, they can also be used to quickly
retrain models as soon as any data drift is detected in the real data. While all these methods require
an expert to perform in-depth analysis, the benefits in model accuracy and resilience are well worth
the effort.

Figure 2. A simple representation of data synthesis.

CrossTalk - November 2024 24

Testing
Once synthetic data is used to train a model, it is important to ensure the performance of the model is
not degraded when applied to real data. Ideally, the synthetic data is very similar to the real data that
it is based upon. However, this process is to ensure that the trained model is robust and generaliz-
able to any real data it encounters. The process of using synthetic data starts with analyzing existing
real data, synthesizing high quality data to train on, and then testing on the original real data. This
comes with the benefit of requiring less real data (for testing) than what would be needed for training
using real data. It also means that when modeling rare events, such as in predictive maintenance,
the model can massively benefit by reducing required data while still confirming that the training data
applies to the real data. This holds true for training data that covers a wide variety of categories, but
other techniques can aid in the data requirement in that case.

3: The Impact of System Design on Data Requirements
Another method in reducing data requirements is smart design. In general, training data will contain
certain trends which are used by a model to make predictions. The more complicated the trends, the
more difficult it is for the model to learn. As a consequence, this leads to larger models which natu-
rally require an increased amount of data. This has resulted in impressive accomplishments, however
it has also increased data and processing requirements, as well as made models more difficult to
understand or troubleshoot. In most cases, complex problems can be broken down to a sequence
of smaller problems that build upon each other. In these situations, using effective system design to
break the problem down into smaller parts can improve performance while reducing model complex-
ity. This allows the expert to use smaller models which come with several benefits, including signifi-
cantly reduced data requirements.

Preprocessing
The first system design method that can help to reduce data requirements during training is pre-
processing. Many applications of DL integrate traditional algorithms for preprocessing. Using these
algorithms, it is possible to preprocess the training data further before feeding it into the DL algorithm.
A preprocessing step allows the model to skip over some initial computation, allowing the model to be
both smaller and train quickly on less data. Not only does this make the process more efficient, but it
can also allow deep learning to be applied to areas where it could not before. For example, Stringer,
et al. demonstrated a targeted preprocessing of radar data that made the critical features for identi-
fying interference more consistently observable, allowing the application of a simple DL model to the
traditionally challenging field of radar detection. This preprocessing also helped to allow for the use of
smaller, more specialized models [26].

Using smaller models provides many benefits, starting with a more manageable training process.
While smaller models fail in complicated problem spaces, they require less time to learn simple
trends, thereby inherently requiring less data, reducing the overall cost of building and training the
model. When choosing the model size, another consideration is the interpretability of smaller models.
Interpretability signifies how easy it is for a human to understand what and why a decision is made.
Having interpretable models is important to build user trust and diagnose problems when a system
does not perform as intended [27][28]. Interpretability is important to have for these reasons, but it
also brings about benefits in data usage. Having well-defined, understandable models to process
parts of the training data allows the expert to choose a subset of the training data that specifically tar-
gets that model. This means that, on top of needing less data, it is easier to see what data is needed
for the training process. All of the benefits of small models culminate in the ability to build cohesive
structures with multiple models working together to solve the larger overarching problem.

CrossTalk - November 2024 25

Integrating multiple ML models into systems is another design method that can be effectively utilized
to mitigate data risks. This approach requires more initial expert design and analysis than training
monolithic models. However, it also provides the reduction in data requirements gained from using
small models while also scaling well to larger problem spaces. Like preprocessing, it is possible to
distribute some of the calculations done on the training data, and then recombine it. This grants the
benefits of preprocessing the data beforehand and combining the inherent explainability of multiple
smaller and simpler ML models. Figure 3 shows an example of an AI application to radar detection
as described in Stringer, et al [26]. In this structure, data preprocessing, post-processing, and ML
models are used. The structure allows for the system to split the data to be processed by specialized
expert models. These experts are trained on specific subsets of the data, resulting in less data that

Figure 3. Shows components of the metacognative radar detector. The Blue
and Green boxes are ML models. This architecture benefits from data pre-

processing and the separation of tasks to expert subsystems.

CrossTalk - November 2024 26

is needed to prepare the system. Further, using structured systems like this increases robustness by
allowing parts of the system to be switched out without impacting the rest of the system. Additionally,
when encountering operational obstacles such as data drift, an expert can analyze which components
the data drift effects and replace those parts. Because only small parts of the system are updated,
this can be done quicker and with less effort than replacing the whole system.

Work Smarter, Not Harder, With Data
Big Data is at the center of the DoD’s strategy in strengthening our deterrence against near peer
adversaries. It enables technologies that can improve battlefield efficiency, reduce decision-making
timelines, and automate a variety of systems. However, the availability of relevant data (especially
modern wartime data [6]), processing requirements, and costs required for working with large data-
sets also create major vulnerabilities. To mitigate these vulnerabilities, it is essential that the DoD
identify methods of reducing data requirements and more effectively utilizing the data it has in a
sustainable manner [29]. The role of Big Data will continue to grow in the coming years, but a greater
emphasis on the augmentation, labeling, and quality of the data will be necessary to create robust
and generalizable models as well as maintaining a technological advantage in the field. Indiscriminate
use of real data in a DL model is not a strategy that is appropriate for the Air Force, as it inherently
lacks means of combating data drift and bias. For this reason, the adoption of smarter data prac-
tices, the incorporation of domain knowledge, model transparency, as well as an understanding of DL
models is necessary to the development of reliable and robust AI tools. Implementing these practices
is necessary for addressing and adapting to the ever-changing threats that the Air Force and these AI
tools will face.

References
[1] D. of Defense, “Digital modernization strategy 2019,” https://media.defense.gov/2019/
jul/12/2002156622/-1/-1/1/dod-digital-modernization-strategy-2019.pdf

[2] “Dod data strategy,” https://media.defense.gov/2020/Oct/08/2002514180/-1/-1/0/DOD-DA-
TA-STRATEGY.PDF

[3] “Creating data advantage,” https://media.defense.gov/2021/May/10/2002638551/-1/-1/0/DEPU-
TY-SECRETARY-OF-DEFENSE-MEMORANDUM.PDF

[4] “2023 data, analytics, and artificial intelligence adoption strategy,” https://media.defense.gov/2023/
Nov/02/2003333300/-1/-1/1/DOD_DATA_ANALYTICS_AI_ADOPTION_STRATEGY.PDF

[5] M. Dunn. “Goldilocks kill chains and the just right data,” Military Review, vol. May-June, no. 1, pp.
1–9, 2024.

[6] J. Breau, K. Erhardt, and J. Reddis. “Collaborative combat aircraft need data to train for combat,”
The Mitchell Forum, vol. 52, no. 1, pp. 1–7, 2023.

[7] P. Gao, Z. Han, and F. Wan. “Big data processing and application research,” in 2020 2nd Interna-
tional Conference on Artificial Intelligence and Advanced Manufacture (AIAM), 2020, pp. 125–128.

[8] Y. Rotalinti, et al. “Detecting drift in healthcare ai models based on data availability,” in Machine
Learning and Principles and Practice of Knowledge Discovery in Databases, I. Koprinska, P.
Mignone, R. Guidotti, S. Jaroszewicz, H. Fröning, F. Gullo, P. M. Ferreira, D. Roqueiro, G. Ceddia, S.
Nowaczyk, J. Gama, R. Ribeiro, R. Gavaldà, E. Masciari, Z. Ras, E. Ritacco, F. Naretto, A. Theissler,

CrossTalk - November 2024 27

P. Biecek, W. Verbeke, G. Schiele, F. Pernkopf, M. Blott, I. Bordino, I. L. Danesi, G. Ponti, L. Sever-
ini, A. Appice, G. Andresini, I. Medeiros, G. Graça, L. Cooper, N. Ghazaleh, J. Richiardi, D. Saldana,
K. Sechidis, A. Canakoglu, S. Pido, P. Pinoli, A. Bifet, and S. Pashami, Eds. Cham: Springer Nature
Switzerland, 2023, pp. 243–258.

[9] J. Steier, et al. “Understanding the Limits of Artificial Intelligence for Warfighters: Volume 2, Distri-
butional Shift in Cybersecurity Datasets.” Santa Monica, CA: RAND Corporation, 2024.

[10] L. A. Zhang, Y. Ashpari, and A. Jacques. “Understanding the Limits of Artificial Intelligence for
Warfighters: Volume 3, Predictive Maintenance.” Santa Monica, CA: RAND Corporation, 2024.

[11] R. A. Pyles and H. L. Shulman. “United States Air Force Fighter Support in Operation Desert
Storm.” Santa Monica, CA: RAND Corporation, 1995.

[12] D. Snyder, et al. “Command and Control of U.S. Air Force Combat Support in a High-End Fight.”
Santa Monica, CA: RAND Corporation, 2021.

[13] J. A. Leftwich, et al. “Advancing Combat Support to Sustain Agile Combat Employment Concepts:
Integrating Global, Theater, and Unit Capabilities to Improve Support to a High-End Fight.” Santa
Monica, CA: RAND Corporation, 2023.

[14] J. Fleming, et al. “Naval Logistics in Contested Environments: Examination of Stockpiles and
Industrial Base Issues.” Santa Monica, CA: RAND Corporation, 2024.

[15] S. C. Slota, et al. “Good systems, bad data?: Interpretations of <scp>ai</scp> hype and failures,”
Proceedings of the Association for Information Science and Technology, vol. 57, no. 1, Oct. 2020.
[Online]. Available: http://dx.doi.org/10.1002/pra2.275

[16] S. K. Das. “Smart Design and Its Applications: Challenges and Techniques.” Singapore: Springer
Singapore, 2021, pp. 1–6. [Online]. Available: https://doi.org/10.1007/978-981-33-6195-9_1

[17] M. Frye, J. Mohren, and R. H. Schmitt. “Benchmarking of data preprocessing methods for
machine learning-applications in production,” Procedia CIRP, vol. 104, pp. 50–55, 2021, 54th CIRP
CMS 2021 - Towards Digitalized Manufacturing 4.0. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S2212827121009070

[18] S. James, et al. “Synthetic data use: exploring use cases to optimize data utility,” Discover Arti-
ficial Intelligence, vol. 1, no. 1, Dec. 2021. [Online]. Available: http://dx.doi.org/10.1007/s44163-021-
00016-y

[19] S. A. Assefa, et al. “Generating synthetic data in finance: opportunities, challenges and pit-
falls,” in Proceedings of the First ACM International Conference on AI in Finance, ser. ICAIF ’20.
New York, NY, USA: Association for Computing Machinery, 2021. [Online]. Available: https://doi.
org/10.1145/3383455.3422554

[20] A. Gadetsky and M. Brbic. “The pursuit of human labeling: A new perspective on unsuper-
vised learning,” in Advances in Neural Information Processing Systems, A. Oh, T. Naumann, A.
Globerson, K. Saenko, M. Hardt, and S. Levine, Eds., vol. 36. Curran Associates, Inc., 2023, pp. 60
527–60 546. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2023/file/be38c-
74290c251820e396680a82ce12d-Paper-Conference.pdf

[21] C. Shi, et al. “Auto-dialabel: Labeling dialogue data with unsupervised learning,” in Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, E. Riloff, D. Chiang,
J. Hockenmaier, and J. Tsujii, Eds. Brussels, Belgium: Association for Computational Linguistics, Oct.-
Nov. 2018, pp. 684–689. [Online]. Available: https://aclanthology.org/D18-1072

CrossTalk - November 2024 28

[22] A. Shrivastava, et al. “Learning from simulated
and unsupervised images through adversarial train-
ing,” in 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017, pp. 2242–
2251.

[23] A. Stringer, et al. “Application of generative
machine learning for adaptive detection with limited
sample support,” in 2024 IEEE Radar Conference
(RadarConf24), 2024, pp. 1–6.

[24] J. E. Fountain. “The moon, the ghetto and arti-
ficial intelligence: Reducing systemic racism in
computational algorithms,” Government Information
Quarterly, vol. 39, no. 2, p. 101645, 2022. [Online].
Available: https://www.sciencedirect.com/science/arti-
cle/pii/S0740624X21000812

[25] E. Albaroudi, T. Mansouri, and A. Alameer. “A
comprehensive review of ai techniques for address-
ing algorithmic bias in job hiring,” AI, vol. 5, no. 1, pp.
383–404, 2024. [Online]. Available: https://www.mdpi.
com/2673-2688/5/1/19

[26] A. Stringer, et al. “A metacognitive approach
to adaptive radar detection,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 60, no. 1, pp.
168–185, 2024.

[27] D. Minh, et al. “Explainable artificial intelligence: a
comprehensive review,” Artificial Intelligence Review,
vol. 55, no. 5, p. 3503–3568, Nov. 2021. [Online].
Available: http://dx.doi.org/10.1007/s10462-021-
10088-y

[28] A. Vakil, et al. “Finding explanations in ai fusion of
electro-optical/passive radio-frequency data,” Sen-
sors, vol. 23, no. 3, 2023. [Online]. Available: https://
www.mdpi.com/1424-8220/23/3/1489

[29] P. Villalobos, et al. “Will we run out of data? limits
of llm scaling based on human-generated data,” arXiv
preprint arXiv:2211.04325, 2024, dOI: https://doi.
org/10.48550/arXiv.2211.04325

CrossTalk - November 2024 29

About the Authors
Alexander Stringer received a B.S. degree in electrical
engineering from the New Mexico Institute of Mining and
Technology. He received M.S. and Ph.D. degrees in elec-
trical and computer engineering from the University of
Oklahoma, with a focus on machine learning and radar
signal processing. In June 2020, he helped found the 76
SWEG office of research, where he currently serves as
an applied research lead. His current research interests
include first principles-based machine learning, cognitive
radar, metacognition, and machine learning explainability.

Alex Stringer

Research Lead

AFSC/SW/76 SWEG

alexander.stringer@us.af.mil

Geoffrey Dolinger received the B.S. degree in electri-
cal engineering from Oklahoma Christian University. He
received the M.S. degree in electrical and computer engi-
neering from Oklahoma State University with a focus on
controls and neural networks. In July 2021, he joined the
76 SWEG office of research, where he currently serves as
an applied research lead. He is also a doctoral candidate
in the electrical and computer engineering department at
University of Oklahoma. His current research interests
include cognitive radar, metacognition, reinforcement

learning, and multiagent game theory.

Geoffrey Dolinger

Research Lead

AFSC/SW/76 SWEG

geoffrey.dolinger@us.af.mil

CrossTalk - November 2024 30

Asad Vakil graduated from the Ohio State University in
2018 with a Bachelor’s degree in Electrical and Com-
puter Engineering, a Masters in Electrical and Computer
Engineering in 2022 at Oakland University, and is cur-
rently in the process of completing a PhD in Electrical and
Computer Engineering at Oakland University. The pri-
mary focus of his research was on heterogenous sensor
fusion between passive radio frequency and electro opti-
cal modalities for the purposes of achieving explainable
target detection. He currently works as a civilian engineer
at the 76th SWEG, 559th Software Engineering Squad-

ron.

Asad Vakil

Research Engineer

AFSC/SW/76 SWEG

asad.vakil@us.af.mil

Joseph Karch is a Research Engineer with the United
States Air Force. He graduated with a B.S. in Computer
Engineering and a M.S. in Business Administration from
Oklahoma Christian University. Joseph has worked for
the 76 Software Engineering Group (SWEG) for over two
years, and has worked on the applied research team for
over a year and a half. He has contributed to publications
related to artificial intelligence and machine learning com-
bined with the fields of radar, navigation, and computer
vision. He has been a co-author on four IEEE publica-
tions. This work has been presented at international con-

ferences in Barcelona, Spain and Sydney, Australia.

Joseph Karch

Research Engineer

AFSC/SW/76 SWEG

joseph.karch.5@us.af.mil

CrossTalk - November 2024 31

Timothy Sharp is a Research Engineer with the United
State Air Force. He received a B.S. in Computer Engi-
neering, Physics, and Mathematics from The Virginia
Polytechnic and State University. In January of 2023 he
joined the 76 SWEG office of research where Timothy
focuses on conducting research in machine learning (ML)
applied to the fields of Radar, Navigation, and Computer
Vision. Timothy has contributed to the field through sev-
eral publications. In his role, Timothy has been pivotal
in advancing the application of ML in various domains,
including the development of innovative solutions for
radar and navigation systems. He has collaborated with
interdisciplinary teams to drive research that bridges the-
oretical ML concepts with practical implementations in

defense technology.

Timothy Sharp

Research Engineer

AFSC/SW/76 SWEG

timothy.sharp.7@us.af.mil

CrossTalk - November 2024 32

Introduction
Almost everyone engaged in modern society is aware of the emergence of Artificial Intelligence
(AI) in the form of Large Language Models (LLMs), stemming from OpenAI’s announcement of the
release of ChatGPT 3.0 in November of 2022. Numerous news items have described the astonishing
advances of this form of AI, from fooling some users with its almost eerie humanity, writing excellent
short stories and creating compelling images, to translating natural language and providing very good
information via chat interfaces. Fewer news items have chronicled the shortcomings of AI, such as
its sometimes-perplexing hallucinations (blatant errors), its propagation of human biases, and the
unsustainable growth in the cost, both economic and electrical, of training the next new (usually much
bigger) model. Our approach in this article reflects that of Jesse Ehrenfeld, recent president of the
American Medical Association, who said “It is clear to me that AI will never replace physicians — but
physicians who use AI will replace those who don’t”[1]. That is, AI has useful abilities, and should be
used where practical to solve problems in the real world, being carefully cognizant of its strengths and
weaknesses.

AI has attracted colossal amounts of investment, development focus, and hype, so progress has been
almost unbelievably rapid, even for tech-savvy observers. Using AI breaks the mold of conventional
software engineering, where software engineers work with proven, stable methods. It forces software
engineers into a different regime, using a method that is highly capable but unproven and rapidly
changing, in its major capabilities and its Application Programming Interfaces (APIs), and this reality
will not be suitable for all military contexts. Readers should check for developments since this article
was finalized (November 2024).

This article will first describe some of current AI’s strengths and weaknesses. It will then detail the
work to overcome one of those weaknesses, the lack of explainability, which often causes AI’s human
overseers not to trust AI’s results enough to use them for critical use cases. To make Explainable
AI’s use and value concrete, it is applied to an important domain, the resilient and efficient operation
of dynamic energy microgrids (i.e., military bases) primarily based on renewable energy generation.
The article addresses possible strategies for avoiding other AI weaknesses and then summarizes with

CrossTalk - November 2024 33

approaches that can help organizations exploit AI’s considerable strengths while avoiding the pitfalls
of its considerable weaknesses.

Current AI Strengths
Prediction of Natural-Language Responses

The core capability that enables LLMs to provide value is their ability to predict the next word (token)
in a sentence (string of tokens) based on the massive training the LLM has undergone. (Tokens can
also be (e.g.) pixels in the context of images or notes in the context of music.) This may seem like
magic, but it’s really just the repeated measurement of what words are most likely to follow other
words in the training material. Current LLMs have huge numbers of parameters (70 billion for Llama
3.1 70B released in July 2024, with unconfirmed reports of up to ~2 trillion parameters for OpenAI
GPT-4, Anthropic Claude 3, and Google Gemini variants), meaning they can plausibly track a huge
number of potential concepts, and this power is brought to bear daily for the many regular users of
these LLMs.

Translation
This same predict-the-next-token capability enables LLMs to perform some difficult aspects of nat-
ural-language translation compellingly, choosing appropriate synonyms and phrasing based on the
detailed context, which delivers translations that seem more accurate and nuanced to the human ear
than previous machine translations. Translating natural language via an LLM is still subject to some
of LLMs’ weaknesses and so should be validated by a human, but many observers believe that LLMs’
performance on language translation will improve quickly and become the de facto approach.

Current AI Weaknesses
Unsustainable Computational Intensity

As AI and LLMs have become more capable, their expected high economic value has created a high
sense of urgency to make them better quickly. Because the training phase of LLM development is the
most time-consuming and is extremely parallel, using more processors (typically graphics proces-
sors (GPUs)) can reduce the runtime proportionally, with the expense of more money and electricity.
This has led to astonishing growth in the amount of computing used for training LLMs over the last
10+ years. One of the first efforts to highlight this, in 2018, was by OpenAI, which showed that from
2012 to 2018, the computing/electricity used for training doubled every 3.4 months, which translates
to increasing about 100 times every 2 years, as shown in the figure below [2]. Even for those used to
the rapid growth of compute power over the last few decades, usually measured as doubling every
2 years, it’s hard to grasp a growth rate of 100 times every 2 years, which extrapolates to 10 billion
times (1010) every decade. To be clear, the growth rate in recent computing power was for a fixed
budget, which AI training is not; AI-training budgets have grown drastically, to the point where Elon
Musk recently announced a new system installed by xAI that has 100,000 NVIDIA H100 GPUs, which
nominally would consume 150MW of power and cost $3-4 billion. And xAI plans to double the size of
the system in short order [3].

CrossTalk - November 2024 34

It can be expected that growth will not continue at this rate, as it would consume an untenable fraction
of generated electricity. For example, one analysis by WellsFargo predicts that AI would grow from
0.2% (8 terawatt-hours (TWh)) of U.S. electricity demand in 2024 to 652 TWh in 2030. If U.S. electric-
ity generation doesn’t also grow, which is unlikely, AI would consume 16% of U.S. electricity in 2030
[4]. This tension between supply and demand could be resolved in a number of ways; as an AI user, it
is prudent to expect AI’s power consumption to cause changes in preferred use styles and cost.

Lack of Explainability
Today’s AI is built on neural networks, which are layers of “neurons” connected to mimic loosely the
way human brains work. Language model developers have increased the number of layers of neu-
rons, and those added layers enable more discrimination between sets of training data. However, for
most humans, the underlying neural net still does not work as an explanation or rationale for why the
AI gave the answer it gave. For serious tasks, where human health or large sums of money are at
risk, humans need insight at least into how the AI made its recommendation, if not beyond that into
how the AI chose between different hypotheses that humans might have considered. See the Explain-
able AI section (page 35) for more detail.

Figure 1. Growth in the amount of computing used
for AI, 1960-2022, from OpenAI [2].

CrossTalk - November 2024 35

Untrustworthiness
The current generation of generative AI is notorious for hallucinations, or errors of fact, perhaps the
most glaring of which are fictitious web links provided as evidence for a given assertion. An early
example of this happened in court filings in the Southern District of New York in 2023 where AI fabri-
cated precedent court cases that did not exist, and the lawyer using the AI did not double-check the
AI’s output [5]. “Untrustworthiness” in this context is different from in a truly human context. It is true
that the LM is not trustworthy, in the sense that it is not careful enough about the truthfulness and
accuracy of its statements, and so does not engender trust in the humans consuming those state-
ments. Unlike humans, however, current AI has no motivation to deceive or inflate its apparent effec-
tiveness; it is just lacking the self-awareness to know when it is at or past the point at which it can
be effective. Other than certain classes of problems or information that the language model knows it
can’t effectively address, it doesn’t understand when to say, “I don’t know.” As LMs improve, they may
acquire human-like motivations that could complicate the task of believing their rationales.

Lack of Commercial/Technical Stability
APIs for AI services are changing rapidly, reflecting the rate of change in the underlying AI technology.
This conflicts with the needs of warfighters, who need systems that work stably over 10 years or more
(sometimes referred to as “set and forget”), and puts defense-software engineers in a bind, having
to bridge long-term stability to the user with rapid change in a key underlying technology. Note that
the change in AI APIs is just an extension of the rapid changes in cloud APIs that have challenged
defense-software engineers for similar reasons over the last several years.

Explainable AI (XAI)
Very often, discussions of XAI’s capabilities suffer from vague or ambiguous definitions, making it
challenging to grasp its essential properties and carry on proper rigorous discussions. This section
presents a framework for XAI that draws parallels with proofs in formal logic. An example use case
could be recommending changes to the human operator of an energy microgrid powering a military
base; see XAI Applied to Energy Microgrids for Military Bases on p. 37 below. The proposed frame-
work precisely defines and captures the key properties of XAI and explainability. A framework like this
can deliver the explainability that will build trust in defense-software engineers and their warfighter
users, enabling AI to be deployed for appropriate problems. This framework employs mathemati-
cal concepts – not overly technical but grounded in common sense – to provide clarity and facilitate
meaningful discussion. Let us start with defining the fundamental components of our framework:

•	 Input Space X: A set representing all possible inputs to the AI model.
•	 Output Space Y: A set representing all possible outputs or predictions.
•	 Model (f): A function f:X→Y representing the AI system.

To define explanations, consider a logical system L, such as First-Order Logic, Higher-Order Logic,
or Intuitionistic Logic. A logical system provides a formal language with syntax (symbols, formulas),
semantics (meaning of the formulas), and inference rules (how to derive conclusions from premises).
In this context, the AI model’s operation is considered as analogous to a theorem in mathematics,
where the input and the model’s architecture correspond to the premises, and the output corresponds
to the conclusion. The Explanation Space E is then defined by the set of all valid proofs in the logical
system L that leads to conclusions about the model’s predictions. Formally,

CrossTalk - November 2024 36

where P is the set of all possible proofs in L, and Conclusion(p) extracts the concluding statement
from proof p. Each proof p in E represents a potential explanation for a prediction made by the model.
This formulation captures the idea that explanations are sequences of logical deductions that start
from known premises and end with the model’s prediction. The Explanation Function e maps each
input x∈X to a proof p(x)∈E that derives the model’s prediction f(x) from a set of axioms or premises
related to x:

and satisfies Conclusion(p(x)) = f(x). The map e ensures that for every input, there is a corresponding
explanation in the form of a logical derivation that culminates in the model’s prediction.

These definitions bring rich framing: by thinking of explanations as proofs, the results are grounded
in the language of logic, well known to software engineers and end-user analysts, while also cap-
turing the compositionality inherent in complex AI models, which are often constructed from simpler
components. This mirrors how proofs are built from basic logical steps. Furthermore, since humans
often use logical reasoning to explain decisions, this framework is intuitively appealing for generating
explanations that are accessible and meaningful to users. This extended model is depicted in Figure
2, where the conventional language model on the left does not have the ability to explain how it got
its answers, while the explainable language model on the right is extended with a logic module that
delivers explainability.

Figure 2. Conventional Language Model and Language Model
with Complementary Logic Module Enabling Explainable AI.

Perhaps more importantly, in this age of misinformation and fabricated content, formal proofs can be
verified for correctness (i.e., “show your work”), providing a means to ensure the validity of expla-
nations. Logical systems are expressive enough to capture various forms of reasoning—deductive,
inductive, and even abductive—allowing us to model the diverse ways in which AI models process
information.

There is one more consideration to discuss: quantifying the quality of explanations. For this, consider
measures of fidelity and interpretability. Fidelity assesses how accurately the explanation reflects the
model’s actual reasoning process; an explanation with high fidelity ensures that the logical derivation
mirrors the computational steps of the model. Interpretability gauges how easily a human can under-

CrossTalk - November 2024 37

stand the explanation. It can be influenced by factors such as the length of the proof, the complexity
of the logical constructs used, and the familiarity of the reasoning patterns to the intended audience.
The objective is to find an explanation function e that balances fidelity and interpretability across the
input space X.

XAI Applied to Energy Microgrids for
Military Bases

Microgrid Background
Humankind faces the urgent need to avoid the Earth’s climate breakdown, which would be cata-
strophic for human society. Reducing greenhouse-gas emissions from energy production is a major
portion of that task, so worldwide there is a massive shift from greenhouse-gas-emitting fuels to
renewable sources of energy; examples include solar, wind, hydro, and geothermal, with specific
technologies spanning a wide range of maturity.

The U.S. energy grid needs to quickly incorporate massive renewable-generation capacity mediated
by massive storage capacity, from a fleet of devices whose composition itself is quickly changing
as new technologies become commercially relevant. The growth in the number of devices and their
bidirectionality of power, compared with the unidirectionality of the traditional generation-to-load grid,
requires radically new techniques to deliver the necessary reliability, resilience, flexibility, and cost-ef-
fectiveness.

Microgrids, each of which is a collection of energy grid resources (generation, load, and usually stor-
age) under the control of a single organization, are viewed as essential to widespread deployment of
renewable generation, as they provide an architecture that balances the need for rapid local change
with the need for stability in connections with the wider grid. Islanding, the ability to separate from the

Figure 3. An example military microgrid, showing typical uses
as well as renewable-energy generation and storage.

CrossTalk - November 2024 38

wider grid, insulates a microgrid from macro events such as hurricanes or cyberattacks on the energy
grid, delivering better resilience than in the conventional grid. In many other circumstances, however,
integration with the wider grid gives economic advantages (e.g., selling local renewably generated
power when the purchase price is high and buying remotely generated power when the local demand
exceeds the local supply). Thus flexibility in detaching and reconnecting from the wider grid and
robust operation in either mode are key.

Value of Military Microgrids
The U.S. Department of Defense (DoD) has been one of the early movers toward microgrids, recog-
nizing the reduced reliability of the wider grid both in the U.S. and in other countries and its impact on
military readiness. To date, the key military microgrid benefit has been improved energy security and
resilience and resulting enhanced mission continuity. Unlike many civilian situations, military bases
can be rigorous in their response to reduced energy supply, prioritizing more and less critical needs,
and microgrids enable this prioritization.

As shown in the figure above, military microgrids have primary loads that are transportation and tacti-
cal vehicles, depots, and housing. Supply comes from local generation, renewable (typically solar or
wind but possibly hydro, geothermal, or others) or fossil-fuel-based, storage, and possibly transmis-
sion from the wider power grid. The local microgrid will have its own controller.

The next key step in fulfilling the potential of military microgrids is integrating renewable energy gen-
eration and storage and driving operational efficiency. The first phase’s focus on resilience accepted
local generation of any type, greenhouse-gas-emitting or renewable. The second phase requires
integrating renewable generation devices, the most effective of which generate intermittently and thus
need storage (usually batteries) to deliver power when generation is insufficient. For a military base,
there are many constraints that the local microgrid must satisfy – e.g., ensuring that critical energy
loads are always served, if at all possible, that storage always contains a threshold amount of energy,
that renewable generation is exploited fully, that vigilance to cyberattacks is never lacking, and that
use of greenhouse-gas-emitting fuels is minimized. Operating the microgrid effectively in the face of
uncertainty (e.g., generation and load affected by (esp. extreme) weather, load affected by hard-to-
predict mission requirements and durations, cost affected by market forces, component reliability)
requires both forecasting the expected future state of the microgrid as well as responding when the
forecast proves inaccurate.

XAI for Military Microgrids
All microgrids, military or otherwise, will be pressed to work effectively quickly as foundation pieces
of the Smart Grid. Given all the uncertainties in distributed energy resources (DERs), both generation
and storage, including forecasting generation and load, protecting against electromagnetic transients
(EMTs), and anticipated cyberattacks to the grid, microgrids will need analytics that provide headroom
to cope with unanticipated issues. Military microgrids will have the added burden of likely being the
first to be stressed in particular dimensions – early deployment, size (number of devices), efficiency,
and use of demand response (i.e., the ability for the grid to notify certain loads that they will not be
satisfied) - in addition to the obvious extra requirement of working well in truly life-or-death situations,
which will put even more stress on microgrid analytics. Also, despite the name, microgrids can easily
have enough nodes to exceed the abilities of conventional analytics. With these pressures to deploy
scaled microgrids in earnest quickly, much better analytics are sorely needed and XAI is a promising
path.

The explainable AI description above, conceivably, could be implemented by a variety of mecha-

CrossTalk - November 2024 39

nisms. One way to couple the language of logic to the language of AI is by using key concepts from
the algebraic topology branch of advanced mathematics, which can identify noteworthy changes in
data, as a bridge with the predictive power of Language Models (LMs). One such math concept is
persistent homology, which measures the topology of data in the mathematical sense, meaning the
structure of data that does not change with simple deformations and hence that structure can be reli-
ably viewed as more real (persistent) and not due to the noisiness of the real world. Persistent homol-
ogy can distinguish usual and unusual activity, which is used with an LM to identify worrisome from
benign changes. The other LM contribution is to translate the not-very-accessible persistent homology
concepts into energy-grid concepts familiar to grid operators and analysts. LMs are completely com-
fortable with persistent homology, so asking an LM to use persistent homology internally to analyze
data, predict changes, and translate the concepts back into the familiar terminology known by the grid
operator is a potential way both to sanity-check the LMs’ results and to give a rationale to humans
that can be compelling. Transform Computing, Inc (XFR) built prototypes of this capability and found
that LMs are surprisingly effective in analyzing data and translating between domains in this way.
Persistent homology provides the sanity check or proof, along with explanation, that enables human

Figure 4. Language model translates persistence
diagrams from math domain to grid domain.

grid operators to trust the results of XAI. These two uses of an LM are illustrated in Figure 4: the LM
receives as input the persistence diagrams from simulations of the baseline and proposed-change
grid configurations, interprets them for their impact on the quality of the grid, and translates those
results from the math world of persistence diagrams to the grid world of the grid operator. Persistent
homology and other advanced mathematical methods can deliver powerful analysis that scales to
microgrid size/complexity that conventional analytics cannot, and early collaborators are working to
prove these methods with real-world data.

Relevance for cybersecurity
Most of our attention has been focused on bolstering the electrical aspects of microgrids, but microg-
rids also have conventional computer networks inside them, which are already subject to conventional
cybersecurity attacks and are expected to be targeted for combined computer/grid attacks that could
temporarily disable or even permanently damage electrical generation, storage, and transmission
equipment. Protecting the Smart Grid against such attacks will be paramount, whether the attackers

CrossTalk - November 2024 40

are private actors or nation states, and complicated by the need to deploy and scale military microg-
rids quickly. With comprehensive testing of microgrid software impractical, analytics that give strong
situational awareness of new or poorly understood attacks will be of high value. The combination of
proofs via advanced math, especially persistent homology, and LMs will deliver this required situa-
tional awareness.

Strategies for Avoiding Other AI
Weaknesses

AI suffers from several weaknesses, particularly hallucinations and technical instability, both of which
hinder the commercial viability of AI systems. The now familiar phenomenon of hallucinations occurs
when models produce outputs that are ungrounded, nonsensical, or not based on the input data, i.e.,
a fabrication. This issue is especially problematic in applications like decision support systems, where
inaccurate or misleading information can lead to serious consequences. Technical instability is less
familiar and refers to unpredictable or inconsistent behavior in AI models, such as sensitivity to small
input changes or fluctuations in performance over time.

Addressing these issues is an active area of research, with techniques like Reinforcement Learning
from Human Feedback (RLHF) aiming to align model outputs with human preferences. RLHF involves
training models using feedback from human evaluators, guiding the AI to produce more accurate and
relevant responses. However, while RLHF and similar methods provide incremental improvements,
they often lack a rigorous foundational framework and may not fully eliminate hallucinations or techni-
cal instability.

The proposal in the Explainable AI section (page 35) might be a good candidate to address these
two major weaknesses—hallucinations and technical instability. First, it naturally addresses halluci-
nations as it employs formal logic to structure and constrain the reasoning process of AI models, so
the likelihood of hallucinations is inherently reduced. In this framework, every prediction made by the
model is accompanied by a logical proof that derives the output from the input data using valid infer-
ence rules. Each step in the reasoning process must logically follow from the previous one, ensuring
that conclusions are directly tied to the premises. This means there is no room for unsupported infor-
mation, as every conclusion must be justified within the logical system.

The same is true for technical stability: the model behaves in predictable ways, as the same prem-
ises and reasoning steps will consistently lead to the same conclusions. With explanations formalized
as proofs, developers can more easily identify the sources of errors or unexpected behavior in the
model. For instance, when the model’s prediction deviates from expected outcomes, the correspond-
ing proof can be examined to pinpoint where the reasoning diverged.

Summary
The current generation of AI, embodied by large language models, has apparently immense but
poorly scoped capabilities, with some known weaknesses. Prudent organizations are exploring how
to make use of the capabilities while avoiding the weaknesses. XFR is focused on explaining AI’s
results to humans in ways that build trust and confidence, building on the power of advanced math
in concert with LMs. This capability is expected to be especially high value for energy microgrids, a

CrossTalk - November 2024 41

compelling societal need, which must grow rapidly in size, resilience, and efficiency, beyond the ability
of conventional analytics to deliver. Prototypes have demonstrated some of the key capabilities of this
end-to-end workflow. These and similar developments are expected to address AI’s current shortcom-
ings and help deliver more of AI’s potential to a larger audience.

References
[1] Schumaker, Erin; Leonard, Ben; Paun, Carmen; and Peng, Evan. “AMA president: AI will not
replace doctors.” Politico, 10 July 2023. https://www.politico.com/newsletters/future-pulse/2023/07/10/
ai-will-not-replace-us-ama-president-says-00105374.

[2] “AI and Compute.” OpenAI, 16 May 2018, https://openai.com/index/ai-and-compute/.

[3] Eadline, Doug. “xAI Colossus: The Elon Project.” HPCwire, 5 Sept. 2024, www.hpcwire.
com/2024/09/05/xai-colossus-the-elon-project.

[4] Kindig, Beth. “AI Power Consumption: Rapidly Becoming Mission-Critical.” Forbes, 27 Aug. 2024,
www.forbes.com/sites/bethkindig/2024/06/20/ai-power-consumption-rapidly-becoming-mission-critical.

[5] Weiser, Benjamin. “Here’s What Happens When Your Lawyer Uses ChatGPT.” New York Times,
27 May 2023. https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html.

About the Authors
Raouf Dridi is driven by his belief that computations can
often be dramatically accelerated by casting them in a
different and better form for the target computer and has
applied that to AI and machine learning with compelling
results. Raouf earned a PhD in Math and CS, focusing
on algebraic topology, at the University of Lille and then
led efforts to map real-world problems to quantum com-
puters while at the University of British Columbia, 1QBit,
Carnegie Mellon University, and, most recently, led the
Advanced Technology team at Quantum Computing Inc.

Please see his Google Scholar (https://scholar.google.
com/citations?user=_dUVcN4AAAAJ&hl=en&oi=sra)
and LinkedIn profiles (https://www.linkedin.com/in/raouf-
dridi/) for more information.

Raouf Dridi

Chief Technical Officer

Dubai, UAE

https://www.linkedin.com/in/raouf-dridi/

CrossTalk - November 2024 42

Steve Reinhardt strives to connect the best of new computing
technology with a customer’s core needs, knowing that both
technical and human factors must be aligned for a successful
deployment. He has led technical and project teams, building
scalable hardware/software systems, graph databases, and
quantum-capable optimizers at Cray Research, SGI, Cray/
YarcData, Interactive Supercomputing, D-Wave Systems,
Quantum Computing Inc., and Quantum Machines. Four
systems for which Steve led development have won HPCwire
Readers’/Editors’ Choice Awards and two of those each deliv-
ered more than $500M of revenue.

Please see his Google Scholar (https://scholar.google.com/
citations?user=huV-_rsAAAAJ&hl=en) and LinkedIn profiles
(https://www.linkedin.com/in/stevenpreinhardt/) for more infor-
mation.

Steve Reinhardt

CEO

Eagan, MN

steve@xfr.ai

CrossTalk - November 2024 43

Abstract
APIs are everywhere in software, providing mission-critical functionality. They expose large amounts
of system functionality, making them valued targets for cyber-attack. Engineering security into an API
is therefore essential to ensure it operates as expected, even in adverse conditions.

Introduction
Application Programming Interfaces (APIs) are everywhere in software, from library components to
classes and modules. There are many definitions out there for what an API is, but I prefer Joshua
Bloch’s (former head of Java at Google) better than all others since it gets to the heart of what APIs
provide: “A set of functionalities independent of their implementation, allowing the implementation to
vary without compromising the users of the component[1].” In other words, the system may change,
but the interface it provides - it’s set of operations publicly available - does not change as much, if at
all.

Figure 1 shows a visual representation of an API. System A and B have interfaces that expose a set
of functionalities (Op1, Op2, etc.) that communicate to each other via a channel. These functionalities
have a separate, and often slower, development rate of change than the systems they provide access
to.

To engineer security in an API is to come up with empirical, cost-effective techniques that maintains
the API’s security attributes even in adverse conditions: if we are not empirical (making decisions with
data) we are not learning from our observations, and those of others, to create better solutions; if we

This article is adapted from a presentation given at the Secure Software by Design Conference in Arlington; VA held in
August 2024. There’s an accompanying White Paper on the SEI website, “On the Design, Development and Testing of
Modern APIs.”

CrossTalk - November 2024 44

are not cost-effective, we will fail to deliver the solution on-time and on-budget; maintaining security
attributes comes down to the fundamental questions of, “how can you know the system you’re build-
ing will work as expected?” and, “is your system trustworthy?” These are values that are important in
engineering security in APIs.

The State of Modern APIs
Modern APIs are ubiquitous, expose large amounts of system functionality to users, and require
evolvable interfaces (interfaces that are both backwards, and forwards-compatible) – all of which are
avenues for attackers to exploit.

Ubiquitous
In a 2024 report, Cloudflare found that, between 53-60% of all internet requests came from APIs as
opposed to other sources [2]. API requests are also the fastest growing kind of traffic on the internet.
If we break down the data by industry we can see, perhaps surprisingly, that heavily regulated indus-
tries such as banking, financial services, and telecommunications comprised the biggest growth in
API usage. If someone thinks that APIs can’t be used because they’re inherently insecure, there’s
the fact that many businesses are putting themselves on the line because they realize APIs bring an
extraordinary amount of value. So, APIs aren’t just used by internet companies, they’re being used by
everyone.

According to metrics collected by data.gov, which is a real-time metrics aggregator provided by the
U.S. government, there have been over 12 billion requests for APIs provided by federal agencies
since they started collecting data, with over 300K unique API keys representing an approximate
number of applications using this data [3].

Expose System Functionality
APIs expose a large share of system functionality. According to the same Cloudflare report, over
half of API requests in the web are POST requests, which means they are requests that modify the
system the API is exposing. This includes adding an entry to a database, making a logical change,
creating or deleting resources, etc. This represents an enormous amount of functionality being made
available on the internet for a clever attacker to abuse [2].

Figure 1. Visual representation of two, connected APIs.

CrossTalk - November 2024 45

The importance of APIs, particularly third-party APIs, to work as expected cannot be understated: in
perhaps one of the most famous cases of software failure, the UK Post Office prosecuted, convicted,
and bankrupted hundreds of its own employees over the course of 16 years due to a faulty account-
ing software they were using for payroll. The system regularly showed money disappearing from Post
Office accounts due to bugs in the API. “Each time the user pressed “enter” on the frozen screen, it
would silently update the record. In one instance, that bug created a £24,000 discrepancy, which the
Post Office tried to hold the post office operator responsible for” [4]. The Post Office never questioned
the results the third-party API was providing them, assuming they were always correct, and prosecut-
ing the post-masters (many of which are elderly or poor). It took many years for the UK government
to realize this mistake and overturn convictions and bankruptcies it had made. Investigations are still
ongoing.

The lesson from this is that APIs have become an essential part of the workflow for many businesses
and governments, and their behavior is usually taken as gospel. Users (either in the company using
the API or outside it) should be able to provide rapid feedback to the developers building the API in
order to alert if something is off.

The effect of faulty API software is shown by a 2023 Palo Alto Networks survey: 92% of organizations
experienced an API-related security incident the previous year. Of these, 57% experienced multiple
API-related security incidents. Even though 3/4 of organizations reported having a robust API security
program. A 2023 study commissioned by Akamai API Security confirms these observations: 41% of
organizations surveyed had an API security incident in the last 12 months. 63% of those noted that
the incident involved a data breach or data loss [5].

Evolvable Interfaces
Modern APIs require evolvable interfaces. That is, they frequently require backwards and forwards
compatibility. Everyone who builds software knows that their codebase will change significantly over
the course of years, months, even weeks. According to an analysis by Bernhardsson, older projects
such as Linux and Git on average have the same line of code change once every 6 years; younger
projects such as Kubernetes, Angular, and Keras change once every 6 months. A fitted curve for a
few dozen open-source projects shows the average half-life of a line of code is 3 years [6]. Stripe, a
global payments system company that makes the most used payments API in the world, has changed
its API interface (not just a few fields but the whole interface) 6 times in the last 10 years [7].

So now we have a pretty good idea of the state of modern APIs: they are ubiquitous, they regularly
expose large amounts of system functionality (many times mission-critical functionality with life-or-
death consequence), and they require interfaces that evolve as requirements change. These attri-
butes provide critical pathways for attackers to exploit, and they increase the risk to the organization
that creates these APIs as well as those that are dependent on it. We, as software designers, need to
assure that APIs work as expected by users, that they are trustworthy and useful, instead of vulnera-
ble; an asset instead of a liability to the organization, and a tool for providing value instead of creating
harm.

Development
Since we’re interested in building high-quality APIs quickly and securely, the best methodology to use
is DevSecOps. DevSecOps allows for empirical development techniques by reducing the number
of variables being changed and deployed in a system –instead of developing for 6 months and then
having a “big-bang” deployment, we make changes small, atomic, fully tested, and reversible. If a

CrossTalk - November 2024 46

change causes a service failure or bug in production, we can easily identify the root cause of the
issue, rollback, and re-deploy.

Supply Chain Security
Developing any kind of software nowadays requires dependency on other software. The OpenSSL
library, ubiquitous in any kind of software due to its encryption capabilities (what allows access to
websites with SSL/TLS), has 59 dependencies. The Debian OS has approximately 170K pre-com-
piled packages installed in the system (assuming a graphical installation). The effect of having some
of the most popular software libraries depending on hundreds or thousands of other libraries creates
an enormous attack surface area, just in the application layer. To counter this, scanners are needed
that check for known vulnerabilities in software packages or their dependencies, and a Software Bill
of Materials (SBOM) for an accurate, detailed view of all currently used software (the SEI has done
extensive research on these topics, see further readings). A breach of an API not only compromises
the organization that develops it but also any other organization that depends on it.

Fortunately, many software vendors are making it easy to create an SBOM from a project, such as
Gitlab, Github, JFrog, and more. CycloneDX is a popular open-source Extended Software Bill of
Material (XBOM) (SBOM, SaaSBOM, ML-BOM, etc.) specification that most vendors support and
provides a rich set of metadata to track provenance, licenses, vulnerabilities, relationships and many
such attributes. SBOMs are rapidly becoming a staple of an enterprise security strategy, with the
army mandating SBOMs on all new software [8].

The best time to scan a software dependency for vulnerabilities is the moment it is first installed.
Some organizations scan on a weekly or monthly basis, but in a DevSecOps model, security is per-
formed the moment there is a change –in this case, when it’s first installed. Artifact storage software
such as Artifactory or Amazon Inspector can scan packages when they are downloaded and run
periodic checks to ensure there’s no recently discovered exploits. Numerous vendors and solutions
for scanners exist ranging from static code analysis to runtime analyzers, container scanners, config-
uration scanners, secrets scanners, and many more. Trivy, Chekov, and Nessus are a few examples.

Version Control Practices
The concern with scanning for every change suggests we should have a way to track every change.
The specific practice is to version control everything: code, configurations, documentation, manifests,
anything except secrets and credentials. The point of this is to be able to have a snapshot of the
entire system, such that any change introduced into the system that can possibly change its qualities
of Confidentiality, Integrity, or Availability can be traced back without going through time-consuming,
laborious root-cause analysis. Additionally, if every change made is small, it would make it easier to
test, rollback, and reason about. It would truly create a system that grows incrementally, rather than
exponentially. Some of the largest open-source projects exemplify these practices, such as the Linux
kernel, React, and Kubernetes – these have a standard commit template that must be followed, with
subject matter experts reviewing new code to ensure quality is maintained.

API Versioning
We can further engineer assurance into the API by versioning it separately from the system it sup-
ports. This is beneficial for its developers, but it has a special relevance for its consumers. If a devel-
opment team is constantly pushing out changes that affect the set of operations it exposes or the
correctness of its response, then the APIs’ clients would not consider it very trustworthy. Its assurance
would be broken. The range of solutions to this is varied. On one hand, an API can be tightly coupled

CrossTalk - November 2024 47

to the system, with every change potentially affecting the set of operations it exposes – this requires
communication to be sent out to API clients every time, regardless of whether they want the change
or not. This is going to alienate clients and cause havoc on their systems. On the other hand, the
API development team can go to great lengths not to break the interface or response of the APIs,
only adding new endpoints perhaps, but never changing current ones. The C standard library is a
good example of an API that does not change much. Clients might like this since it means there’s
nothing they have to change, but it could severely affect the development of the API to the point that
it becomes very expensive to make architectural changes around it or stifle the creation of new fea-
tures. A good middle point approach has been exemplified by the Stripe API.

Stripe Case Study
Stripe provides an API that powers most of the online commercial transactions in the world. It is
valued at $65 billion and processed over $1 trillion in payment volume in 2023. They’ve been around
for almost 15 years and have changed their main API interface 6 times. They talk about their API
in-depth in a blog post, so I’ll summarize here: Initially, their API was designed for simplicity, famously
summarized as “seven lines of code” to handle payments. As they expanded to support ACH, Bitcoin,
and various international payment methods, their API become more and more complex, with multiple
state machines, endpoints, and flags that developers had to provide. After a while, they recognized
the need for a unified and simpler API approach. They put together a “Tiger Team” and they worked it
out in a conference room for about a month. This led to the creation of just two endpoints, PaymentIn-
tents and PaymentMethods, which aimed to standardize the integration process for all payment
methods while abstracting away the intricacies of each specific method. To ensure these changes
were beneficial and user-friendly, Stripe actively engaged with their customers, gathered feedback,
and iterated on the API design. They focused on real user integrations and practical application over
theoretical perfection. This overhaul reduced complexity significantly, thus lowering the cognitive load
on developers. The new system, while initially more complex than the original “seven lines,” ultimately
provided a more scalable and reliable framework for handling diverse and global payment methods
[7].

Conclusions
The lessons here are that APIs should initially be small and focused to what it is trying to accomplish.
As use cases increase, communication with clients is essential to determine what changes exactly
are desired. If you don’t know who your clients are, reach out or lock them out. Changes to the inter-
face should allow for backwards compatibility if that is needed, but more importantly for forward-com-
patibility so that the API can accommodate future changes.

Testing
In the DevSecOps model, testing is not a one-time activity but a continuous process. Testing provides
increased assurance that the API will work as expected. There are various kinds of testing that should
be performed as part of an API’s Continuous Integration/Deployment pipeline:

•	 Unit testing individual code expressions
•	 Integration testing for testing the behavior of components or modules
•	 End-to-End testing to test the functionality of the entire application

Because of API’s unique role in accepting input from n number of clients and passing it over to inter-
nal systems, it’s resiliency for responding to all different kinds of inputs is especially important. Fuzz
testers are an increasingly popular and effective tool that go through a large input space and perform

CrossTalk - November 2024 48

tests on them. There is a zoo of different open-source fuzz testers available to use, ranging from
white-box to black-box testing. Advances in AI are making it easier than ever to create and scale fuzz
tests: Google, for example, has successfully experimented with Large Language Models to re-dis-
cover or find new bugs for over 1000 projects without having to write additional code [9].

Many organizations use penetration testing to find vulnerabilities in their security systems or break
through them. Recently, automated penetration testing tools are providing organizations the capability
to conduct penetration exercises at a faster pace with a lower price. Usually, an automated pene-
tration platform can be pointed toward a client network and perform scanning, probing, and analysis
continuously without human oversight. The Burp suite is a good example of an automation tool that
performs such tasks. Many pipeline vendors such as Gitlab and Github allow you to directly integrate
Dynamic Application Security Testing (a type of automated penetration tool) right in your pipeline with
minimal setup.

The point of all this testing is that, if we create thorough, rigorous tests for every change introduced in
the API, it builds an assurance case for us that the API will work as expected. A change that passes
all tests does not guarantee that it is secure or works as expected, but the test suite is an argument
in favor that it is or is as close to what it can be based on the threat model established. That threat
model can either be explicitly stated in a well-coordinated threat modeling workshop, or implicitly in
the mind of a developer or project manager (not ideal!). There are other considerations in testing such
as container testing, testing infrastructure, test data, the role of the tester and QA team [10].

Deployment/Operations
Once a change is ready to be deployed, we want to limit the blast radius in case something goes
wrong. Canary deployments is a common, effective strategy that deploys to a small subset of the
API’s clients to test whether the functionality is working as expected. Once users and developers are
confident of the release, it gets rolled out to the rest of the client population. Netflix has been a pio-
neer in the use of canary deployments and has continued to improve on this practice with the result
that they can conduct large-scale migrations of their internal systems with minimal to no downtime or
disruption to their business [11].

Now let’s say something does go wrong. Ideally, we would want our system to recover as quickly as
possible. The only way this can happen is if the faulty change gets removed from the system and
it returns to its previous state. But this may not be straightforward: it may take hours or days for a
change to go through the testing pipeline, release review, management approval, and so on. And
even then, if the change is a dependency on other changes that were deployed with it, it makes it
complicated to revert. For this reason, we want fast, automated tests that can give us signaling that
the change is safe to deploy within minutes or seconds. And we want the change to be atomic so
that it does not create complex dependency problems if we ever have to roll it back. Feature flags
are a technique that’s been extensively used to deal with the problem of deploying small changes
with dependencies. At Github, feature flags have been a staple for some time that have successfully
allowed them to ship complex features with reduced risk and higher confidence to millions of users
[12].

API System Security
System security is defined as all the supporting infrastructure required to enable the API. This
includes proxies, load balancers, firewalls, VPNs, network devices, caches, and so on. All of this
hardware has security considerations: from vulnerabilities in the software to exploits hidden in the

CrossTalk - November 2024 49

firmware. It is well known how state actors especially have targeted these low-level devices as access
points into systems. Just this year, the Department of Justice disclosed how the “Volt Typhoon” Chi-
nese hacker group targeted Cisco routers and Netgear routers that had reached their end-of-life to
target critical U.S. infrastructure [13]. Inventory management and the ability to upgrade software of
such devices in case of zero-day vulnerabilities is a good first step towards mitigating these attacks.

Conclusion
The testing and cybersecurity of APIs provide assurance that it is performing as expected. This con-
fidence is born out of continuous running of extensive tests across multiple levels of the system.
interface. To maintain the qualities of confidentiality, integrity, availability, and non-repudiation in APIs
requires considerable testing for the supporting services which provide these, even under changing
conditions; a DevSecOps development model is the best methodology to build APIs with such attri-
butes.

Document Markings
Copyright 2024 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Con-
tract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engi-
neering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should
not be construed as an official Government position, policy, or decision, unless designated by other
documentation.

References herein to any specific entity, product, process, or service by trade name, trademark, man-
ufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by Carnegie Mellon University or its Software Engineering Institute nor of Carnegie Mellon
University - Software Engineering Institute by any such named or represented entity.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International
License. Requests for permission for non-licensed uses should be directed to the Software Engineer-
ing Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon Univer-
sity.

DM24-1005

Further Readings
[1] Woody, Carol. “Applying the SEI SBOM Framework.” SEI Blog, 5 Feb. 2024, insights.sei.cmu.edu/
blog/applying-the-sei-sbom-framework.

CrossTalk - November 2024 50

Citations
[1] “A Brief, Opinionated History of the API.” QCon New York 2018, You-
tube. https://www.youtube.com/watch?v=LzMp6uQbmns.

[2] “Cloudflare 2024 API Security and Management Data Report.”
Cloudflare, www.cloudflare.com/2024-api-security-management-report/.
Accessed 6 Aug. 2024.

[3] “api.data.gov Metrics.” https://api.data.gov/metrics

[4] Cooban, Anna. “Prison. Bankruptcy. Suicide. How a Software Glitch
and a Centuries-Old British Company Ruined Lives | CNN Business.”
CNN, Cable News Network, 13 Jan. 2024, www.cnn.com/2024/01/13/
business/uk-post-office-fujitsu-horizon-scandal/index.html.

[5] “2023 API Security Data in New Report.” Palo Alto Networks, www.
paloaltonetworks.com/resources/research/api-security-statistics-report.
Accessed 6 Aug. 2024.

[6] Bernhardsson, Erik. “The Half-Life of Code & the Ship of The-
seus.” Erik Bernhardsson, Erik Bernhardsson, 19 Apr. 2020, erikbern.
com/2016/12/05/the-half-life-of-code.html.

[7] Bu, Michelle. “Stripe’s Payments Apis: The First 10 Years.” Stripe’s
Payments APIs: The First 10 Years, 15 Dec. 2020, stripe.com/blog/pay-
ment-api-design.

[8] “Assistant Secretary of the Army (Acquisition, Logistics and Technol-
ogy)

Software Bill of Materials Policy.” Department of the Army, https://feder-
alnewsnetwork.com/wp-content/uploads/2024/09/081624_Army_SBOM_
Memo.pdf

[9] Liu, Dongge, et al. “AI-Powered Fuzzing: Breaking the Bug Hunting
Barrier.” Google Online Security Blog, 16 Aug. 2023, security.googleblog.
com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html.

[10] “API Security Fundamentals | White Paper.” The API Security Dis-
connect, www.akamai.com/site/en/documents/white-paper/2024/api-se-
curity-fundamentals.pdf. Accessed 6 Aug. 2024.

[11] Blog, Netflix Technology. “Migrating Critical Traffic at Scale With No
Downtime — Part 2.” Medium, 20 Oct. 2024, netflixtechblog.com/migrat-
ing-critical-traffic-at-scale-with-no-downtime-part-2-4b1c8c7155c1.

[12] Gimeno, Alberto. “How We Ship Code Faster and Safer With Fea-
ture Flags - the GitHub Blog.” The GitHub Blog, 27 Apr. 2021, github.
blog/engineering/infrastructure/ship-code-faster-safer-feature-flags.

[13] Crouse, Megan. “Botnet Attack Targeted Routers: A Wake-up Call
for Securing Remote Employees’ Hardware.” TechRepublic, 9 Feb. 2024,
www.techrepublic.com/article/volt-typhoon-botnet-attack/

CrossTalk - November 2024 51

About the Author
Alejandro Gomez is a software engineer at Carnegie
Mellon University’s Software Engineering Institute. He
has served as a tech lead in multiple Department of
Defense projects, bringing technical excellence, bridg-
ing communication between management and software
teams as well as teaching and mentoring other devel-
opers. Prior to joining CMU, Alejandro worked as a
software engineer at Vanguard and IBM. He has an MS
in Software Engineering from Villanova University and
a double Bachelors in English and Economics from the
University of Miami, FL. He lives in Pittsburgh with his
wife and two children.

Mr. Alejandro Gomez

Software Engineer

Software Engineering Institute

ajgomez@cert.org

CrossTalk - November 2024rossTalk - November 2024 52

Abstract
This article will take a historical to present timeline on hardware and software, addressing software
and hardware advancements throughout the years. The following main points will provide a system-
atic perspective to unbiasedly arrive at solutions to narrow the gap between software and
hardware:

•	 Education
•	 Industry
•	 Media
•	 Customers

Each of these points will be analyzed and solutions will be provided for
the entire electronics (hardware and software) market to take notice
of. Everything considered, software and hardware are jointly con-
nected. The software runs on hardware. Without good hard-
ware, good software can’t exist. As the world becomes more
computerized, both software and hardware have become
essential across many industries.

There is a big push for ‘modernization’ across many
industries such as defense, manufacturing, automo-
tives, etc. to adapt modern tools and techniques to
improve the workflow of those industries. An exam-
ple of modernization is the continuous integration/
continuous delivery (CI/CD) model that many tech-
nology companies have adopted. This is one of many
examples that causes people to think software is far
ahead of hardware, because of the frequent updates
and cycles that software engineers in the industry follow
with the software development lifecycle. The most common

CrossTalk - November 2024rossTalk - November 2024 53

modern technique is the agile methodology, which can be used to manage both hardware and soft-
ware. By the end of this article, readers will understand that software and hardware are intercon-
nected entities that require one another to advance.

History
The histories of software and hardware have been closely related for many years. For example,
one of the first developments in software started with punch cards [1]. Holes were shown to indicate
specific machine code instructions. Assembly language was one of the very first computer program-
ming languages, which originated in 1949 but is still used today for some low-level programming
[2]. But hardware, or all electronics, dates back further. The history of electronics stems back to the
late 1800s - specifically in the 1890s - with the invention of vacuum diodes, which was followed by
a vacuum triode to amplify electrical signals. The next iterations of this hardware (the tetrode and
pentode) improved upon the design and functionality of that time and were used in World War II [3].
Back then, in a short period and due to the available resources at that time, hardware showed great
innovation and real-world use. Some people may argue that many things worked just fine before the
maturity of software began taking shape in the 2000s.

Before the 2000s, many software applications were web-based or desktop apps. The internet was still
in its infancy, so many of the web apps were poorly designed compared to today [4]. Now, we have
many software frameworks and tools to help with making these much easier. So much so that some
may say we have an excessive amount of software tools that affect how current software is devel-
oped [4][5].

In the early 2010s, many software apps transitioned from desktops to mobile due to expanded use
of mobile devices [6][7]. The major impact of this stems from how cell phones and tablets changed
the way people interacted with their devices and how convenient they were to handle most people’s
daily tasks. Cell phones and tablets were so impactful that web and mobile apps were written specif-
ically for them. Since the beginning of the 2020s, cell phones and tablets have closed the gap tre-
mendously in terms of performance compared to desktops. To take advantage of all this power that is
available now, software must be developed for the new semiconductors and larger memory modules
[8]. Many software apps do not take advantage of these advances, resulting in a buggy application
that will frustrate the end user.

The changes that have been broken down here have led to more challenges that professionals are
currently facing today: challenges in the way we teach and train engineers [8], in the way industry
hires and onboards new engineers, in the way the media has affected the perception of engineering,
and in the way profit has dominated innovation.

Education
The current education of computer science (CS) is a bit unorthodox because it’s still a new field of
study compared to other engineering studies. It has gotten better and more streamlined as time
has gone on. But, compared to the field of electrical engineering (EE), which has years of extensive
research and finetuning, computer science is still in its infancy. In the undergraduate college system,
computer engineering (CE) is derived from the two, but more so related to electrical engineering.
Depending on the location, most schools group their EE with CE, or their EE with CS. This is a great
strategy to have in terms of industry, but there is a bit of fragmentation. This presents problems for
students looking to transfer to different schools because there isn’t a standard or model for schools
to follow regarding teaching these subjects. The accreditation organizations, such as The Accredita-

CrossTalk - November 2024rossTalk - November 2024 54

tion Board for Engineering and Technology (ABET), give some curriculum standards, but not how a
university structures its engineering program. The choice of which program is best is often difficult for
most students.

CS has even more fragmentation. Some schools have their CS program with the engineering depart-
ment (CE, EE, or all three together), some have their CS program with the science department, some
have their program with the Math department, some have their program with the Information Technol-
ogy (IT) department, and some have their computer science program as a standalone department.
The topic of computer science is so enormous that it’s hard to standardize. Understanding of the
topic expands more every day, causing more confusion and leaving students to ask questions across
online forums and communities (Reddit, Quora, and Stack Overflow) such as, “What is the difference
between CS, CE, and EE?” or “How to narrow the choices of CS, CE, and EE?” This fragmentation
pigeonholes undergraduate students into one expertise and contributes to the gap in understanding
of software and hardware. From a hiring perspective, it also makes it difficult for hiring managers to
gauge where a new graduate’s skills lie.

System Engineering Education
The next concern many students have when studying electronics (both software and hardware) is
the difficulty of math and the complexity of certain topics. Usually, when complexity is involved, there
needs to be a way to deal with variables as they scale. Because of this problem, systems engineering
should be taught among all undergraduate engineering and computer science majors. This will allow
students to see things on a macro level [9]. Taxonomies, ontologies, and topologies are all facets

Application

Algorithm

Programming Language

Assembly Language

Machine Code

Instruction Set Architecture

Micro Architecture

Gates/Registers

Devices (Transistors)

Physics & Chemistry

In
cr

ea
si

ng
 O

rd
er

 o
f C

om
pl

ex
ity

In
cr

ea
si

ng
 O

rd
er

 o
f A

bs
tr

ac
tio

n

So
ft

w
ar

e
H

ar
dw

ar
e

Figure 1. Computer Systems Layers of Abstraction: The design of how a com-
puter system should be recognized when building solutions of any layer.

CrossTalk - November 2024rossTalk - November 2024 55

of engineering that need to be involved. As students enter the workforce, they learn how to conduct
basic responsibilities to complete the job.

Architecturally, from a systems perspective, it is important to know how the system is functional in
decomposition [9]. Every student and engineer who deals with electronics should always remember
the computing layers of abstraction because some solutions do not address the problems. It is vital
to understand both sides to fully optimize the capabilities of both hardware and software. Adopting a
common practice of educating engineers in system engineering will give them the skills necessary to
understand both sides.

System Design Education
Students going into software have often struggled with interview questions involving systems design.
From a software engineering perspective, there just isn’t enough design emphasis taught in schools
[10]. This is in direct opposition to hardware engineering (electrical and mechanical, specifically)
where there is more emphasis on design. In the book “Engineering and the Mind’s Eye,” the author
discusses the ‘lost art’ of design and how the education system has gotten away from the importance
of design [11]. In software engineering curriculums, there often isn’t much design and architecture
of software development taught. For this reason, the edge is given to hardware in terms of students
coming out of school prepared for a job. The margin for error is very slim when creating products out
of physical hardware materials compared to creating them in the digital world [10][12].

From an engineering perspective, other engineers have classified software engineering as a science
rather than pure engineering [13]. Most of what is built is on the computer. The computer takes inputs
from the software engineer and displays the information as some output after the computation is
done. But, because of how software engineers are taught today by schools, bootcamps, and industry,
many skills are missing from software engineers’ repertoire. Design and architecture are part of the
problem. Some engineers eventually learn this concept on the job, in about five to seven years [10]
[13]. But this is a major issue and the reason why there has been a trend to ship production code ‘half
baked’ [14]. I’ve heard it said, “If you can’t draw it, then you can’t understand it. If you can’t under-
stand it, you can’t build it.”

Soft Skills Education
The next problem is the ability to communicate and write – another set of skills that are overlooked
in the study and training of engineering and computer science. Some engineers discount the need
to know how to write documentation and communicate designs and solutions to others. This is more
of a problem with software engineers because of how undergraduate programs/bootcamps may be
structured. Isolating oneself is not how real engineering is done. Engineers usually must write doc-
umentation for others and themselves, as well as communicate with other students, co-workers, or
customers. Being able to communicate is a very underrated skill that separates a good software engi-
neer from a great software engineer [15]. It would also allow more communication between those who
engineer software and those who engineer hardware, thus allowing that connection to narrow the gap
between the two.

	 Education plays a critical role in bridging the gap between disciplines like computer science,
computer engineering, and electrical engineering. One of the fundamental components of this bridge
is the curriculum. The curriculum is the foundation on which students build their knowledge and skills
in these fields. This ensures employers take on minimal risk and gives a person confidence that they
can do their job.

While not all schools suffer from these problems, it remains a big issue overall and to address them

CrossTalk - November 2024rossTalk - November 2024 56

there is a need for it to be recognized as an issue in the media and in industry. The media and indus-
try mold the perception of how incoming students and parents see the job outlook.

Industry
In modern times, most systems in the world are run electrically. However, there are tradeoffs and con-
straints that any electrical system has since software sits on top of an electrical system and needs it
to function. This logically means software can only be pushed so far before its capabilities reach their
peak [16]. Software functions to make hardware better and to make the user experience enjoyable.

The common reasons people think software is so far ahead of hardware is because of the frequent
updates and relatively low overhead of software [8][17]. From a business perspective, it is the reason
so many companies have chosen to have a ‘software first’ approach.

The Modernization of Code
In 2021 and 2022, most job positions were focused on web applications with a sprinkle of mobile
applications [18] - iOS and Android (though some preferred a cross-platform framework). Before
COVID, most job postings requested experience in Java, Python, and V8 JavaScript. However, what
has remained consistent is the high demand for embedded software engineers with knowledge of C
and C++ [19].

Although C/C++ are older, ‘lower-level languages,’ there are too many systems that depend on them.
C++ has received updates every 3 years since ‘modern’ C++ was released. These languages are
used heavily across all aerospace and defense industries and are considered the standard in terms
of software interfacing with hardware. Most other programming languages that could compete with C
and C++ are built off of these languages at their core, just as most operating systems have been built
off Unix and Linux (not including the Windows NT Kernel). Table 1 shows how it has evolved over the
years [20].

C++03 C++11 C++14 C++17 C++20
Templates Multithreading &

memory model
Reader-writer locks Parrell algorithms

of the STL
Coroutines

I/O Streams Keywords: auto
and decltype

Generic lambda
functions

Structured binding Modules

STL with contain-
ers and algorithms

Std: array std: any, std: vari-
ant

Ranges library

Table 1. C++ expansion over the years [20].

Many software engineers focus heavily on the code. That is as important as learning how to think
about the overall software architecture. Next, engineers learn how to decompose (frame out the
house) user requirements and translate them into some type:

CrossTalk - November 2024rossTalk - November 2024 57

•	 Libraries and API calls
•	 Struct and/or Classes
•	 Functions
•	 Logic (if statements and loops)

But there is always a new framework, programming language, API, etc. released and marketed to
engineers. It’s impossible to learn everything in software, but knowing the fundamentals and forming
a model is the core of learning anything.

In comparison with hardware, not much has drastically changed since the 1980s [21]. Many electronic
devices today are built on:

•	 Diodes
•	 Capacitors
•	 Resistors
•	 Inductors
•	 Transistors

Most of the world still runs on 8-bit chips that were used decades ago. In fact, most military aerospace
hardware is working fine from decades old technology. The same can be said for many industries.

As the market for software matures, the landscape continues to change. As software is constantly
evolving, it is difficult for software professionals to keep up to date on innovations in software, much
less innovations in hardware, concurrently.

Technological Changes

Industrial
Revolutions Industry 1.0 Industry 2.0 Industry 3.0 Industry 4.0 Industry 5.0

Description Water & steam
power

Mass produc-
tion, Electrifica-
tion

Computers,
automated pro-
duction

Internet
of Things,
machine learn-
ing

Human-robot
collab, per-
sonalization
humanization

Systems Mechanization Assembly line Electronics Cyber-physical
systems

Cognitive Sys-
tems

Table 2. Industrial Revolution timeline 1800s-2020s [22].

Currently, we are in the early stages of Industry 5.0, the information era, and the deployment of
robotic systems [22]. The focus is on Artificial Intelligence (AI), cybersecurity, and the miniaturization
of products to become smaller and more computerized (embedded systems). Combining those three
things has established the term ‘smart’ or ‘intelligent’ systems.

Cloud computing is another term that many in the industry think is modern. The heavy usage of
pushing data to the servers of Amazon, Google, and Microsoft (the biggest vendors) is what many
in the startup community and larger companies do to cut the costs of having to deal with operating
and maintaining their servers [23]. The tradeoff is trusting another company with that data [24]. There
have been many data breaches across large companies and, while there are many reasons and ben-
efits of having another company deal with server maintenance, it is creating companies with larger
and larger market valuations [23][24]. Since we are in industry 5.0, and data is important, people

CrossTalk - November 2024rossTalk - November 2024 58

should prioritize their data. Data is powerful and whoever has most of the world’s data becomes a
titan [3][25]. Since there has been a small uptick in the complexity of microservices, there will be
another cycle that starts with more companies taking ownership of the data collected [23][26].

Historically, like all things in the world, there are cycles. Offloading data to another vendor while
focusing on the other parts of the product or system has been happening since well before the 2000s,
when Amazon Web Services (AWS) started to take over the internet. As time went on, the most
common distributed control system became programmable logic controllers (PLC). In modern times
they are still around but in the form of clusters of computers controlling tasks [23][27].

Changes in Hardware
Electrical Systems

Everything has some type of electrical circuit board and computer component but, as mentioned,
there are tradeoffs. One of the flaws of electrical systems is how to deal with heat. Many companies
have built cooling systems for dealing with heat dissipation, but the issue is still present as any electri-
cal device can overheat. The next is aging electrical systems that can become faulty from wires being
corroded or some electronic storage medium failing for a plethora of reasons [21][28].

Semiconductors
Semiconductors are inside almost everything now and their power has grown tremendously since
their first iterations. This Intel table shows the comparison of one of its first chips for the desktop to
one released in the 2020s. There is still a lot of untapped potential to show how software can bring
out the power of these chips [29].

Processor: Intel i9-12900 Intel 8086
Instruction Set: x86-64bit x86-16bit
Released: 2021 1978
Cores: 16 1
Clock: 3.5 Ghz 5 Mhz
Cache Memory: 19.25 MB 64 KB
Power: 125 watts 1 watt

Table 3. Intel 8086 vs Intel i9-12900 [30].

In short these are just some of the factors that address the gap between hardware and software. It
highlights the increase of computational power, but that power has not been used properly.

Media
	 History has shown everyone that many powerful people use media for good and bad. Media
of all forms only champions software as king due to some of the reasons explained [10][31][32]. The
example used of VCs is the reason why TV shows, movies, social media, etc., push for more people
to go into software engineering while neglecting to show the negatives and downsides of being a soft-
ware engineer, which has contributed to a huge surplus of people going into the industry [32].

CrossTalk - November 2024rossTalk - November 2024 59

With all the praise and hype behind the software, much of the media fails to report common negatives
of being a software engineer: the long work hours, bad management, product/project stagnation, poor
working environments, unrealistic deadlines, stagnating pay, and variable job security [32][33][34]
[35]. The media does not talk about these issues and the engineers themselves won’t speak out due
to fear of termination and blackballing. The media’s failure to highlight hardware and that side of the
industry has also contributed to an imbalance in job seekers.

The media’s presentation of hardware is borderline nonexistent excluding technical outlets. The spot-
light has been on software due to low overhead and the high salaries of software engineers. Due to
the lack of manufacturing in America, most of the hardware is imported from foreign countries, which
creates its own problems depending on how the product is used. Software is perceived as ‘magical’
and ‘cool’ while hardware is seen as the ‘old kid on the block’ [43].

When problems like these exist, a software and hardware gap is created due to too few members of a
team. This can cause products to be delayed among many other internal issues [33][34][35]. A plat-
form can be used to analyze and start some type of change in the industry for engineers to become
more comfortable on the job. Companies of all sizes can learn from the data scattered across the
internet to retain engineers.

Media outlets should also interview seasoned engineers from various backgrounds. There is a lot of
misinformation throughout media and social media that having one central outlet for engineers (both
software and hardware) to express themselves and improve the quality of work would better the
industry

Customers
The bottom line is that sales mean everything. This expression provides a clear indication of what
customers and suppliers want. For example, the first big push for alternative fuel for vehicles hap-
pened in the 1980s [36]. There were many problems with using these alternatives: infrastructure, sup-
plier parts, and market maturity were some of the many reasons the American people were not con-
vinced it was better [37]. In the 2020s, electric vehicles (and other alternatives) have begun making
people see how they can live with a car that is not powered by gasoline [37][38]. But, although electric
vehicles are the most popular cars now, there are many problems with them, such as the build quality
and overall expense required to repair them compared to gasoline vehicles [39]. Other variables that
indirectly affect this are the infrastructure and rising costs of batteries and other natural resources.
Software and firmware have drastically improved the user experience in these vehicles, but many
customers have complained about the failure of the electronics and how much it costs to not only
repair them (sensors, LCD/LED screens, communications - such as Bluetooth and USB) but program
the electronics to the electronic control unit (ECU) [40][41][42].

Overall, the comparison of vehicles from years before now is an example of customers voting with
their dollars. People and entities buy things that benefit their lives by saving them time, money, or
invoking emotion in the user. This can be said for various innovations electronically, such as the cell
phone and virtual reality. The main use of technology should be to solve a problem. People purchase
items in the hopes of making something better or more efficient.

There are two examples: the first example is how a company may release some iterations of hard-
ware over a certain number of years. The emphasis is on hardware innovation and, although the soft-
ware may add features and bug fixes, this company chooses to use hardware as their key innovation.
The flaw with this approach is the market maturity that comes with frequent hardware releases, as
some customers choose to hold out on their previous hardware because it works fine. But the com-

CrossTalk - November 2024rossTalk - November 2024 60

pany tells customers how that hardware model will lack software updates.

The other example is a company releasing a hardware product every few years or more, relying on
software features and fixes to strengthen the product and stretch its lifecycle. The problem with this
approach is that some customers may think, based on their needs, there must be more frequent hard-
ware releases because software features can only last so long based on the constraints of its hard-
ware. This may cause customers to choose another competitor. Therefore, electronics success is tied
to how customers use it. If it is useful and solves a problem, it will be successful, but there are other
variables to consider, which is what cycle the product is currently positioned in the market.

Figure 2. Product Market Cycle.

Conclusion
This article only scratches the surface of the generations in and of hardware and software. Other
issues, such as the cost of developing hardware vs. software, and new innovations that work to
bridge the gap between hardware and software. Although every product and service are different,
in terms of business operations. In the short term- hardware is more expensive due to importing
and exporting and dealing with the supply chain of suppliers across the world, overhead of multiple
iterations of prototype, and testing. But in the long-term software becomes more expensive. This is
because of development, support, maintenance cost, licensing, customization and integration. But the
lines are becoming blurred now due to many hardware components becoming software programs and
more software interfacing and integrating with hardware. A more in-depth version could easily become
as large as an encyclopedia series.

The study of how to narrow the gap between software and hardware has been going on for three

CrossTalk - November 2024rossTalk - November 2024 61

decades. The development processes of both are more aligned with each other now. However, just
because web and mobile applications have more frequent updates does not mean the software is
far ahead of hardware. It is normally because some bug fixes are being addressed. There is a lower
margin of error for addressing hardware. Also, due to industry and media, software engineers are
given the spotlight compared to other engineers. The physical systems are often overlooked because
of the huge influence the Asian market has on exporting hardware to other parts of the world.

Digital systems are only a small subsystem and software should not be isolated from the other parts
of the system. That is one of the reasons there is so much poorly written software. Software engi-
neers could not work without the other engineers at the lower levels of abstraction. We all need each
other, and innovation comes from both hardware and software. Looking into the past and continuing
to innovate off what was done yesterday or centuries ago is what true innovation looks like. Don’t fear
the past, learn from it.

REFERENCES
[1] Colburn, Robert. “The Surprisingly Long Life of the Punch Card.” IEEE Spectrum, 24 July 2021,
spectrum.ieee.org/the-surprisingly-long-life-of-the-punch-card.

[2] Roller, Joshua. “Coding From 1849 to 2022: A Guide to the Timeline of Programming Languages.”
IEEE Computer Society, 11 July 2023, www.computer.org/publications/tech-news/insider-member-
ship-news/timeline-of-programming-languages.

[3] Massachusetts Institute of Technology. (n.d.). Lee DeForest—Triode Amplifier. https://lemelson.
mit.edu/resources/lee-deforest#:~:text=Lee%20De%20Forest%20(1873%2D1961,which%20he%20
received%20in%201899.

[4] Martinez, Michael. “50 Years of Software.” IEEE Computer Society, 18 July 2023, www.computer.
org/publications/tech-news/trends/50-years-of-software.

[5] Laato, Samuli, et al. “Trends and Trajectories in the Software Industry: Implications for the Future
of Work.” Information Systems Frontiers, Apr. 2022, https://doi.org/10.1007/s10796-022-10267-4.

[6] Hristov, Victor. “Apple iPhone History: The Evolution of the Smartphone That Started It All.”
PhoneArena, 15 Sept. 2023, www.phonearena.com/news/Apple-iPhone-history-evolution-every-mod-
el-list_id98169.

[7] “Your Phone Is Now More Powerful Than Your PC.” Samsung Business Insights, 22 Dec. 2021,
insights.samsung.com/2021/08/19/your-phone-is-now-more-powerful-than-your-pc-3.

[8] Hennessy, John & Patterson, David. Computer Architecture: A Quantitative Approach. 6th ed.,
Morgan Kaufmann, 2018. ISBN 9780128119068, 0128119063.

[9] Dunbar, Brian. “Systems Engineering Handbook.” National Aeronautics and Space Administration.
https://www.nasa.gov/seh/2-fundamentals

[10] Cico, Orges, et al. “Exploring the Intersection Between Software Industry and Software Engi-
neering Education - a Systematic Mapping of Software Engineering Trends.” Journal of Systems and
Software, vol. 172, Feb. 2021, p. 110736. https://doi.org/10.1016/j.jss.2020.110736.

[11] Ferguson, Eugene. Engineering and the Mind’s Eye. First MIT Press, 1994. ISBN
9780262560788.

[12] Dym, Clive L. “Design, Systems, and Engineering Education.” Harvey Mudd College, Dept of

CrossTalk - November 2024rossTalk - November 2024 62

Engineering, 2004.

[13] Davis, Michael. “Will Software Engineering Ever Be Engineer-
ing?” Communications of the ACM, vol. 54, no. 11, Nov. 2011, pp.
32–34. https://doi.org/10.1145/2018396.2018407.

[14] Lyman, Isaac. “Is Software Getting Worse?” Stack Overflow.
25 Dec. 2023, stackoverflow.blog/2023/12/25/is-software-get-
ting-worse.

[15] Galster, Matthias, et al. “What Soft Skills Does the Software
Industry *Really* Want? An Exploratory Study of Software Positions
in New Zealand.” Association of Computing Machinery, Sept. 2022,
pp. 272–282. https://doi.org/10.1145/3544902.3546247.

[16] Bailey, Brian. “Why Hardware-Dependent Software Is So Criti-
cal.” Semiconductor Engineering, 23 June 2022, semiengineering.
com/why-hardware-dependent-software-is-so-critical.

[17] Proven, Liam. “New Software Sells New Hardware – but a
Threat to That Symbiosis Is Coming.” The A Register, 10 Jan. 2023,
www.theregister.com/2023/01/11/software_versus_hardware.

[18] “Occupational Employment and Wages.” Bureau of Labor
Statistics, May 2022. https://www.bls.gov/oes/current/oes151252.
htm#st

[19] “Occupational Outlook for Computer Engineers.” Bureau of
Labor Statistics. https://www.bls.gov/ooh/architecture-and-engineer-
ing/computer-hardware-engineers.htm#tab-6

[20] Stroustrup, Bjarne. A Tour of C++, 3rd ed., Addison-Wesley
Professional, 2022. ISBN 9780136823575.

[21] ARRL Handbook for Radio communications: The comprehen-
sive RF Engineering Reference, 92nd ed., The American Radio
Relay League, Inc., 2016.

[22] Xu, Xun, et al. “Industry 4.0 and Industry 5.0—Inception, Con-
ception and Perception.” Journal of Manufacturing Systems, vol. 61,
Oct. 2021, pp. 530–35. https://doi.org/10.1016/j.jmsy.2021.10.006.

[23] Surbiryala, Jayachander, and Chunming Rong. “Cloud Com-
puting: History and Overview.” IEEE Xplore, Aug. 2019, https://doi.
org/10.1109/cloudsummit47114.2019.00007.

[24] Al Morsy, Mohamed, et al. An Analysis of the Cloud Computing
Security Problem. Cornel University, 2010. https://doi.org/10.48550/
arXiv.1609.01107.

[25] Adel, Amr. “Future of Industry 5.0 in Society: Human-centric
Solutions, Challenges and Prospective Research Areas.” Journal of
Cloud Computing, vol. 11, no. 1, Sept. 2022, https://doi.org/10.1186/
s13677-022-00314-5.

CrossTalk - November 2024rossTalk - November 2024 63

[26] Leng, Jiewu, et al. “Industry 5.0: Prospect and Retrospect.” Journal of Manufacturing Systems,
vol. 65, Oct. 2022, pp. 279–95. https://doi.org/10.1016/j.jmsy.2022.09.017.	

[27] Lamb, Frank. Advanced PLC Hardware & Programming: Hardware and Software Basics,
Advanced Techniques & Allen-Bradley and Siemens Platforms. Automation Consulting, LLC, 2019.
ISBN-13978-0578482231.

[28] Avallone, Eugene, et al. Marks’ Standard Handbook for Mechanical Engineers, 11th Ed.,
McGraw-Hill Professional Pub, 2006. ISBN-100071428674.

[29] Heyman, Karen. “Rethinking Engineering Education in the U.S.” Semiconductor Engineering, 17
Jan. 2024, semiengineering.com/rethinking-engineering-education-in-the-u-s.

[30] Explore Intel’s History. timeline.intel.com.

[31] Wang, Y C. “Early Education Can Be the Key to Recruit the Next Generation Workforce.” Elec-
tronics Weekly, 2 Mar. 2023, www.electronicsweekly.com/news/early-education-can-be-the-key-to-re-
cruit-the-next-generation-workforce-2023-02.

[32] Alpaio, Kelsey. “Career Crush: What Is It Like to Be a Software Engineer?” Harvard Business
Review, 22 Feb. 2022, hbr.org/2021/07/career-crush-what-is-it-like-to-be-a-software-engineer.

[33] Chae, Daniel. “The Pros and Cons of Being a Software Engineer at a BIG Tech Company.” Stack
Overflow. 17 Feb. 2021, stackoverflow.blog/2021/02/17/the-pros-and-cons-of-being-a-software-engi-
neer-at-a-big-tech-company.

[34] Cser, Tamas. “The Cost of Finding Bugs Later in the SDLC.” Functionize. 13 Feb. 2023, www.
functionize.com/blog/the-cost-of-finding-bugs-later-in-the-sdlc.

[35] Toporek, Jared. “The Hardest Part of Building Software Is Not Coding, It’s Requirements.” Stack
Overflow. 29 Dec. 2023, stackoverflow.blog/2023/12/29/the-hardest-part-of-building-software-is-not-
coding-its-requirements.

[36] Muratori, Matteo, et al. “The Rise of Electric Vehicles—2020 Status and Future Expectations.”
Progress in Energy, vol. 3, no. 2, Mar. 2021, p. 022002. https://doi.org/10.1088/2516-1083/abe0ad.

[37] Adderly, Shawn A., et al. “Electric Vehicles and Natural Disaster Policy Implications.” Energy
Policy, vol. 112, Jan. 2018, pp. 437–48. https://doi.org/10.1016/j.enpol.2017.09.030.

[38] Acharya, Samrat, et al. “Cybersecurity of Smart Electric Vehicle Charging: A Power Grid Perspec-
tive.” IEEE Access, vol. 8, Jan. 2020, pp. 214434–53. https://doi.org/10.1109/access.2020.3041074.

[39] Gitlin, Jonathan M. “EVs Have 79% More Reliability Problems Than Gas Cars, Says Consumer
Reports.” Ars Technica, 29 Nov. 2023, arstechnica.com/cars/2023/11/evs-have-79-more-reliability-
problems-than-gas-cars-says-consumer-reports.

[40] Bosch, Robert. Automotive Handbook, 11th ed., Wiley, 2022. ISBN 978-1-119-91191-3

[41] Fraden, Jacob. Handbook of Modern Sensors: Physics, Designs, and Applications, 5th ed.,
Springer, 2016.

[42] Scherz, Paul, & Monk, Simon. Practical Electronics for Inventors, 4th ed., McGraw Hill, 2016.
ISBN-13 978-1259587542.

[43] SpaceX’s newest employee is a 14-year-old prodigy from California - CBS News

About the Author
Elbert Dockery is a software engineer with a wide variety
of skills, ranging from front end development, backend
development, to embedded systems. He has a strong
passion for embedded software development with an
interest in leading a startup to become a sub and prime
contractor to the DoD as well as NASA. Elbert has been
labelled as a ‘DOD innovator’ by NSIN/DoD.

Elbert Dockery

Software Engineer

Department of Defense

https://www.linkedin.com/in/elbert-d-4b00b555/

CrossTalk - Month 2024 Month 2024 65

CrossTalk - November 2024 66

Abstract
Cyber resiliency is a key component to all Navy software applications. No matter how large or small
the program is, the code must be secure. This creates a significant hurdle for small and low-budget
programs. The Common Cyber Resilient Operating Environment (CCROE) supports both the large
Program of Record (PoR) systems, as well as the small developmental projects. CCROE is currently
supporting sixteen projects across the Navy. The development of CCROE is modular and allows for
multiple configurations, reusable to allow multiple PoRs to leverage, cyber resilient to embed cyber
security, designed to support Commercial of the Shelf (COTS) products, and Linux based to support
current PoR efforts. This article provides a high-level overview of CCROE, the cyber resiliency pro-
cess, and the benefits to the Navy.

Background
Cybersecurity is an ever-present issue that is continually evolving. The Naval Surface Warfare Center,
Dahlgren Division, Dam Neck Activity (NSWCDD DNA) approach to hardening a combat system’s
Operating Environment (OE) must evolve with it. The NSWCDD DNA OE team has shown continued
success in developing OEs. Implementing a common Navy surface ship OE reduces risks of critical
infrastructure, provides benefits of increased security posture, and promotes better usage of project
resources. CCROE increases customers and stakeholders’ trust, provides a competitive advantage,
and establishes cost savings.

In GitLab, we create a fork of Red Hat Enterprise Linux (RHEL) operating systems (OS) that incor-
porates Defense Information Security Agency (DISA) application Security Technical Implementation
Guides (STIGs), National Security Agency (NSA) Controlled Access Protection Profile (CAPP) recom-
mended configurations, and National Institute of Standards and Technology (NIST) Common Con-
figured Enumerations (CCEs) standards and guidelines. “A fork is a new repository that shares code
and visibility settings with the ‘upstream’ repository” [1]. By hardening the underlying OS, other cyber
technologies and combat systems can build upon our stable foundation. This technology is especially

CrossTalk - November 2024 67

useful for new systems that may not have the budget in the early development phase.

Introduction
What is Cyber Resilience?

Cyber resilience, or cyber resiliency, is “the ability to weather adverse events in a computing envi-
ronment. It applies to both physical and virtual assets” [2]. Cyber resiliency is a key component to all
Navy software applications. No matter how large or small the program is, the code must be secure.
This security measure creates a significant hurdle for small and low-budget programs.

The NIST Special Publication (NIST SP) defines cyber resilience as “the capability to anticipate, with-
stand, recover from, and adapt to adverse conditions, stresses, attacks, or compromises on systems
that use or are enabled by cyber resources” [2] [3]. “Cyber resilience is a concept that brings business
continuity, information systems security, and organizational resilience together” [4]. Cyber resiliency is
“intended to enable mission or business objectives that depend on cyber resources to be achieved in
a contested cyber environment” [5].
What Constitutes Cyber Resilience?
Figure 1 shows the U.S. Department of Commerce NIST Cybersecurity Framework (CSF) func-
tions that aid organizations in expressing the management of cybersecurity risk at a high level and
enables risk management decisions. The CSF 2.0 six functions are Govern, Identify, Protect, Detect,
Respond, and Recover. These functions provide a comprehensive view of the lifecycle for managing
cybersecurity risks over time [6].

�������

������ ��
�
�
����

���
��

��

�

�����

�
�
�
�
�
�
�

���

	������������
���������

Figure 1. CSF
Functions [6].

Why is Cyber Resilience Even More
Critical Now?
With the continued widespread business disruptions,
“organizations are looking for technology with solutions
to provide secure, adaptable, engaging, and trusted
experiences for their employees, customers, and
partners” [7]. An ultimate goal is to have systems that
are highly automated, distributed, and ready for any
mission.

“Cyber resilience unites IT cybersecurity with business
continuity and overall organizational durability. When
properly deployed, the concept leads to the ability to
continue routine operations when facing cyberattacks,
as well as natural disasters, economic downturns, and
various other crises” [8].

No matter how robust a cybersecurity program oper-
ates, considering the occurrence of a successful
cyberattack at any moment means that organizations should concentrate on resilience comparatively
to prevention [8]. “While cybersecurity focuses on preventing cyber threats, cyber resilience includes
preparation, response, and recovery” with the acknowledgment that cyber incidents could be evident
regardless of the best efforts of total prevention [8]. “Given the realities of today’s cyber threats, and
tomorrow’s potential new technology-generated attack vectors, we really have no choice but to build
resilience in from the beginning” [9].

CrossTalk - November 2024 68

Components of Cyber Resilience
The essential components of cyber resilience are identifying which services are most critical,
what plans need to be in place to make sure those services continue, what staff training might
be required to enhance cyber resilience, and other key aspects of planning for adverse events
[7]. Cybersecurity is essential to a cyber resilience strategy. “Cisco research found that 97%
of organizations in America had made changes to their cybersecurity policies—specifically to
support remote working—since the start of the COVID global health crisis” [7].

What is System Hardening?
The NIST defines system hardening as “a process intended to eliminate a means of attack by patch-
ing vulnerabilities and turning off nonessential services” [10] [11]. “Implementing robust security
measures without addressing system vulnerabilities and nonessential components is like installing
a security system that only protects the primary entrance of a facility” [11]. Avoiding attacks remedi-
ates unplanned downtime. “The main goal of system hardening is to improve overall IT security. This
lowers your risk for data breaches, unauthorized access, and malware injection” [12]. Attackers will
have fewer opportunities to gain access to a mission-critical or critical-infrastructure computer sys-
tem’s sensitive information [13].

Types of System
Hardening System Hardening Description

Application
Software hardening prevention by protecting your applications
from fraud techniques like unauthorized tampering and reverse
engineering.

Operating System Enabling or adding security features to your OS to make it more
secure.

Server
Securing the data, ports, components, functions, and permissions
of a server using advanced security measures at the hardware,
firmware, and software layers.

Endpoint
Securing and protecting end-user devices from potential vulnera-
bilities and malicious attacks.

Database

Securing both the contents of a digital database and the data-
base management system (DBMS), which is the database appli-
cation users interact with to store and analyze information within
a database.

Network
Securing the basic communication infrastructure of multiple serv-
ers and computer systems operating within a given network.

Table 1. Types of system hardening [14].

CrossTalk - November 2024 69

Types of System Hardening
Table 1 describes several types of system hardening. Operating system hardening is the topic in this
article and it involves patching and implementing advanced security measures to secure a server’s
OE. The Operating Environment (OE) as a Target for Hardening

An OE is a commercially available OS with a selection of software and configurations to meet users’
needs, with unnecessary software removed, and hardened with security included from the start. By
hardening the OE, you ensure that each system built from the OE has a common baseline level of
security. Systems are born secure. The attack surface is minimized by removing unnecessary soft-
ware.

Security will be a feature of development from day one, not bolted-on at the end. There will be
less time allocated to setting and checking the basics. The OE’s package manager, and its robust
infrastructure, can help to deploy hardened applications.

CCROE Development
The CCRO process uses the package management infrastructure to provide cyber resilient concepts
outlined in the Introduction section. CCROE development is modular, reusable, and cyber resilient.

Package Management: Tool for Application Hardening
A package manager is part of the OS that manages installed software. In the RHEL OS, the pack-
age manager is Yellowdog Updater Modified (YUM). The command-line interface “yum”, operates on
packages called RPMs. Table 2 describes package management examples using rpm and yum. In
the example, the RPM (and packages such as RPMs) is built. It provides all information to the pack-
age manager along with files defining the software itself, and scripts governing installation upgrade
and removal. In each interaction, the package manager ensures that all packages are compatible.
The package manager does all of this so the user does not have to manage the details.

If an application is hardened when made into a package, then the user can use the package manager
to deploy already-hardened applications. By hardening the underlying operating system, we created a
stable foundation that other cyber technologies and combat systems can build upon. This technology

RPM Instance RPM Command
Query software is present $ rpm -qa

Show version, vendor, and other information about
installed software

$ rpm –qi firefox

Ensure software is signed by a trusted source and unmod-
ified

$ rpm --verify firefox

Install software packages from local or remote $ yum install firefox

Upgrade software packages from local or remote $ yum upgrade firefox

Remove software packages from local or remote $ yum erase firefox

Table 2. Package management examples.

CrossTalk - November 2024 70

is especially useful for new systems that may not have the budget in the early phases of develop-
ment where cyber hygiene is crucial. Below is a lightweight example (i.e., the developer performs less
work):

•	 Take DISA STIGs for Google Chrome
•	 Write a settings file that implements the policies required by the STIGs

•	 Example: Disable the setting that allows search suggestions
•	 Create a RPM package to install that file
•	 The RPM ensures only administrators can edit the file
•	 Deploy that RPM in repositories so new and existing machines can install the RPM

A heavyweight example (i.e., the developer performs more manual work):
•	 Take Firefox source, made by Mozilla to meet the security needs of the public
•	 Take DISA STIGs for Firefox that require certain settings
•	 Recompile Firefox to always follow the STIG-required settings
•	 Package that version of Firefox as a RPM and deploy it in repositories, as previously

When a STIG says to do something, the application gets packaged so that it already does the action;
therefore, less time is spent checking upon it. In the Chrome example, one add-on per harden RPM
covers 40 STIG requirements. This is important when the platform is afloat and one cannot personally
administer it.

Repackaging software to be pre-hardened comes at a cost:
•	 Time is taken to learn the process and perform the repackaging
•	 Firefox in particular may take hours to compile
•	 When the original vendor releases an update, now their version is newer, and may replace the

hardened package, until a new hardened edition is packaged.
•	 Some security features cannot be packaged (e.g., hard drive partitioning)

The benefits of repackaging are:
•	 Applications, and entire systems, installed from the hardened repository are born with those

security features present
•	 Applies to isolated, field-installed assets that will never have access to a centralized manage-

ment server
•	 Allows many users to draw from those repositories

Verification and Validation CCROE
Verification and validation of our CCROE products is part of the development effort, because the OEs
will be deployed to sites without centralized management. Our team ensures the software and infra-
structure is compliant with DISA STIGs in addition to executing other test cases derived from cus-
tomer needs. It must also be ensured that hardware platforms remain reliable during upgrades and
replacements over time. Product updates and new features are delivered and tested as often as the
stakeholder requests.

Benefits of a Common OE
A common OE is available to multiple users within a project, and to multiple projects (e.g., tactical
systems, training systems, maintenance systems, developer workstations, etc.). If multiple projects
can use a common OE, then there is less time taken re-implementing the basics. A modular approach

CrossTalk - November 2024 71

helps to strike a balance between unique needs and a shared implementation. Below are examples:
•	 A common, modular OE makes a hardened version of Firefox available; however, a project

could choose to use a different version, or omit it altogether.
•	 A maintenance system can take the common OE, remove the graphical environment, and add

network management tools.
•	 A developer workstation can take the common OE and add compilers and editors. Package

manager is an important part of making the OE modular.
•	 Projects sharing an OE also share knowledge about how to utilize and improve the OE.
•	 Rapid recovery from incidents assists in the ability to deploy servers that are secure instanta-

neous of the installation.

Developing a Common OE
The CCROE is based on RHEL. The hardening process for the OE adds in missing Department of
Defense required elements such as the DISA RHEL STIGs, DISA application STIGs (e.g., Apache,
MySQL, Firefox, etc.), NSAs Controlled Access Protection Profile (CAPP), and NIST CCEs.

CCROE is comprised of four components: hardened RPMs, curated groups, common tools, and Kick-
start profiles. The RPM Packaging Guide is referenced for novice users to create RPM packages [15].
In Red Hat, the essential inputs of a common OE are:

•	 The commercially available Red Hat baseline OS (e.g., RHEL 7.9) as an ‘.ISO file’.
•	 Repositories of RPM files. (The RPMs are modified by updating existing open-source RPMs

with DISA STIGs and industry standards).
•	 Includes the pre-hardened packages.
•	 Includes anything else users need, since they may be unable to reach public reposito-

ries.
•	 Curate group: At this stage, groups can be created to help with organizing the package.

•	 Kickstart files that govern the overall installation process. (Kickstart profiles are used to min-
imize installation efforts and ensure proper system configuration). Each type of user, or even
each particular server, may have a customized Kickstart file. This specifies which packages to
install from the provided repositories. This may also specify hard drive partitioning, hostname,
Internet Protocol (IP) address, etc. Those settings may provide security features that are not
possible to package, like disk partitioning. A fully automated Kickstart file can reduce the instal-
lation procedure to a single button press.

•	 A Makefile that defines the process of building the OE from those parts.

CCROE High-Level Flow
NSWCDD DNA developed CCROE to be modular (to allow for multiple configurations), reusable (to
allow multiple PoR to leverage), cyber resilient (to imbed cybersecurity), designed to support Com-
mercial of the Shelf (COTS) products, and Linux based (to support current PoR efforts). Figure 2
(below) depicts the common hardened OE cycle.

CCROE development includes two primary goals. First, it must secure the software application prior
to installation and comply with current STIGs, Security Content Automation Protocol (SCAP) Security
Guides, (SSGs), and industry best practices. Second, it must minimize the IA footprint. It does so by
starting development with the minimum set of packages required, rather than by removing packages
at the end of the development process. CCROE development includes containerization and incorpo-
rates Continuous Integration and Continuous Deployment (CI/CD).

CrossTalk - November 2024 72

The process to create a common OE starts with a set of generic requirements that are not specific to
any consumer:

•	 OS baseline (e.g., RHEL 7.9)
•	 What package suites to make available (e.g., the GNU Network Object Model Environment

(GNOME) graphical environment, Firefox, vim)
•	 What packages to remove from a commercial baseline (e.g., remove wireless printer drivers)
•	 Basic hard drive partitioning

DISA STIGs, the security guidelines from DISA, are incorporated into the common OE from the
ground up:

•	 Repository of RPMs with patches built-in
•	 Requirements for hard drive partitioning
•	 Hard disk encryption
•	 Initial firewall setup
•	 Scripted application of patches not covered by hardened RPMs

As more security features and basic setup tasks are implemented in the common OE, less manual
work is required after the installation process. For some use cases, that common OE, without further
customization, may be sufficient.

•	 The common OE will include the resources needed to install a stand-alone machine.
•	 That process may require user interaction to customize the installation, or it could proceed

purely by script.
Situations where the common OE may suffice include:

•	 Simple workstations
•	 Testbeds for testing, development, and demonstrations
•	 Anytime you need *something* working in a hurry, while still having security and commonality

Looking at customer-specific requirements, you may decide to make certain customer-requested
features part of the common OE.

For other users, customizing that common OE will meet their needs. They can:

Figure 2. Common hardened OE cycle.

CrossTalk - November 2024 73

•	 Choose which packages to install from the hardened repositories
•	 Provide additional packages to install
•	 Override the hard disk partitioning and other settings from the common OE
•	 Provide specific user accounts and network settings
•	 Set up services such as NTP

The process of tailoring the OE to a specific need may then feed back to the set of customer require-
ments. For instance, the possibility of needing new dependencies.

Once the customer has received a secure and tailored OE, their setup process has been simplified,
since they no longer need to provide all of the security and customization themselves; those features
are present in the OEs from the moment they are installed. Importantly, this also applies to the cus-
tomer’s response to cyber incidents: servers can be reinstalled as needed, and will have a baseline
level of security immediately.

A Hardened and Common OE
For more than 10 years, NSWCDD DNA has been developing Operating Environments to protect
the Navy fleet. The CCROE development supports both the large PoR systems as well as the small
developmental projects. CCROE is currently supporting sixteen projects across the Navy (e.g., Power
Temperature Controller (PTC), Maintenance Toolkit (MTK), Portable Maintenance Aid (PMA), and
Environmental aGregation GUI (EGG) OEs).

Having hardened applications and OEs mean that systems are born in a secure state. Administrators
spend less time implementing and checking the basics. Security will be a feature of development
from day one, not bolted-on at the end. An isolated system without a centralized management server
will start out secure. By using secure packages, a layer of security provides and verifies the existing,
robust infrastructure of the package manager.

A common, modular OE allows its users to focus on their unique needs, rather than re-implementing
the basics. Application developers can focus on the application. This also avoids the reimplemen-
tation of the security provided by a hardened OE. Knowledge about the OE, and contributions to
improve it, come from a wider user base than for an in-house OE. This allows for long-term stability of
OE knowledge, if application development shifts from one contractor to another.

A modular approach means that when certain users must opt out of security features for mission
reasons, that opt-out done in a narrow scope is not by all users. The common theme in all of
these is cost avoidance by re-use of the OE and its security.

Acknowledgment
It is a pleasure to acknowledge Mr. Emilio Digioia, for the assignment; Dr. Vernon “Dale” Bloodgood,
abstract paper; Mr. Kevin Newcomer, for reviewing and contributing; and NSWCDD DNA reviewers.

References
[1] “Fork a repository: About forks.” GitHub Docs, GitHub, Inc., 2024, docs.github.com/en/pull-
requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo.

[2] Pacific Northwest National Laboratory (PNNL). “Cyber Resilience.” U.S. Department of Energy.
www.pnnl.gov/explainer-articles/cyber-resilience.

CrossTalk - November 2024 74

[3] Ron Ross, et.al. National Institute of Standards and Technology
(NIST) Computer Security

Resource Center. “Developing Cyber-Resilient Systems: A Systems
Security Engineering Approach,” National Institute of Standards and
Technology Special Publication (NIST SP) 800-160 Vol. 2, Rev. 1,
U.S. Department of Commerce, December 2021, csrc.nist.gov/pubs/
sp/800/160/v2/r1/final.

[4] “What is cyber resilience: Cyber resilience defined,” IBM, www.ibm.
com/topics/cyber-resilience.

[5] “Glossary: cyber resiliency.” National Institute of Standards and
Technology (NIST) Computer Security Resource Center (CSRC).
NIST SP 800-172A, U.S. Department of Commerce, February 26,
2024, csrc.nist.gov/glossary/term/cyber_resiliency.

[6] National Institute of Standards and Technology. “NIST Cybersecu-
rity Framework 2.0: Resource & Overview Guide.” NIST Special Publi-
cation 1299, NIST CSF 2.0, U. S. Department of Commerce, February
2024, doi.org/10.6028/NIST.SP.1299.

[7] “What is Cyber Resilience?” Hybrid Work Solutions, Cisco, www.
cisco.com/c/en/us/solutions/hybrid-work/what-is-cyber-resilience.html.

[8] Edwards, John. “Why Cyber Resilience May Be More Important
Than Cybersecurity,” Information Week, February 29, 2024, informa-
tionweek.com/cyber-resilience/why-cyber-resilience-may-be-more-im-
portant-than-cybersecurity.

[9] Pearlson, Keri. Cybersecurity And Digital Privacy: “When Cyberat-
tacks Are Inevitable, Focus on Cyber Resilience.” Harvard Business
Review, July 18, 2024, hbr.org/2024/07/when-cyberattacks-are-inevita-
ble-focus-on-cyber-resilience

[10] Elaine Barker et al. National Institute of Standards and Technol-
ogy. “A Profile for U.S. Federal Cryptographic Key Management Sys-
tems.” NIST Special Publication 800-152, U.S. Department of Com-
merce, October 2015, nvlpubs.nist.gov/nistpubs/specialpublications/
nist.sp.800-152.pdf.

[11] RSI Security. “What are System Hardening Standards?” RSI, 27
Apr 2022, https://blog.rsisecurity.com/what-are-system-hardening-stan-
dards

[12] “What Is System Hardening?” System Hardening, https://www.
intel.com/content/www/us/en/business/enterprisecomputers/resources/
system-hardening.html.

[13] Brett, Daniel. “System Hardening: An Easy-to-Understand Over-
view.” Blogs by Trenton Systems, 14 Apr 2021, trentonsystems.com/
blog/system-hardening-overview.

[14] Schrader, Dirk. “What is Systems Hardening?” Cybersecurity, Net-

CrossTalk - November 2024 75

wrix Blog, 22 Feb 2023, updated 17 March 2023, https://blog.netwrix.com/2023/02/22/system-harden-
ing.

[15] Adam Miller et al. “RPM Packaging Guide.” rpm-packaging-guide.github.io.

About the Author
Linda Wright, a Computer Scientist, most recently, led
Ship Self-Defense System (SSDS) software engineer-
ing team at NSWCDD DNA. Linda has applied her 20+
years of expertise in software and systems engineering
lifecycles as a civilian and contractor to solve mission
and safety critical challenges within various federal and
defense agencies. Linda received a bachelor’s degree
in computer science. She is an International Council on
Systems Engineering (INCOSE) Certified Systems Engi-
neering Professional (CSEP).

Linda Wright

Computer Scientist

Naval Surface Warfare Center

Dam Neck Activity

 linda.c.wright20.civ@us.navy.mil

CrossTalk - November 2024 76

Hear ye, hear ye! Gather ‘round to learn about the newest creature spotted in the land!

Rumor has it that a dragon has been spotted cavorting around the outskirts of the kingdom. Those
who have survived an encounter with the beast return calling it [Unknown Source] … whatever that
means.

Villages along the border have been complaining about its frightening appearance and potential to do
harm. Many fear the dragon stealing their personal information, as its hoard seems to consist of ‘data’
rather than the typical gold and jewels. Guards posted in towns near where the creature has been
spotted admit that the dragon has shown great intelligence and versatility in its attacks, proving its
ability to manipulate ideas with bias and misinformation. They warn that the kingdom’s security is in
jeopardy! Even townspeople who have not seen the dragon in person are concerned about what kind
of damage the beast could cause with the knowledge stored in its hoard!

While many an adventurer has attempted to tame the beast, none have come out entirely success-
ful. Some return with stories about the creature, claiming to have studied it and learned all there is to
know, but others are never seen again. If the danger remains, are we ever truly safe?

The Software Engineering Guild has voiced concern about the resources the dragon uses to maintain
its hoard. While some of their members attempt to build a cage that
may contain [Unknown Source] and its malicious data, others have
taken to ignoring the problem entirely. After all, what cage could
hope to hold such a fearsome force? And if the beast were to break
out, what more damage could it do when angered?

On the other hand, some mages have found solace in the dragon’s
company. [Unknown Source] is, apparently, very knowledgeable
about a range of subjects and willing to grant pieces of its hoard
to those who prove their worth. However, not all mages looking for
this gift have the kingdom’s best interests at heart. Reports of data
ending in the hands of malicious actors remain high in number. The
current recommendation for any who wish to work with the dragon

CrossTalk - November 2024 77

is to tread carefully and double-check any information received. While the assumption isn’t that the
dragon lies maliciously, some of its vast knowledge is out of date.

Whether the majority opinion on the dragon and its hoard is good or bad, the entirety of the kingdom
has called on the land’s monarch to send knights into the dragon’s territory. While some citizens say
we simply need more information about the creature, others have called for new laws regarding how
to deal with the beast and the information it guards. Either way, the involvement of the crown and its
shining pillars is necessary as we move onto next steps in dealing with [Unknown Source] and the
data it keeps.

About the Author
Destinie Comeau works as a publications manager for
CrossTalk: The Journal of Defense Software Engineer-
ing. Before CrossTalk, she worked as a Tier 1 Account
Manager at Pinterest. Ms. Comeau is currently working
toward an MFA in Writing through Lindenwood Univer-
sity. She has her bachelor’s degree in creative writing

from Weber State University.

Destinie Comeau

CrossTalk Publications Mananger

AFSC Software Directorate

destinie.comeau@us.af.mil

https://www.linkedin.com/in/destinie-co-
meau-b2b838183/

With Special Thanks to Siria Snounou

C r o s s T a l k
S p o n s o r

S o c i a l s

